Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 109(1): 339-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546489

RESUMO

Tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), populations were collected from field locations in the Mississippi River Delta of Arkansas, Louisiana, and Mississippi. Third-instar F(1) nymphs from each field location, in addition to a laboratory colony, were screened for susceptibility to novaluron. Both a glass vial bioassay and a diet-incorporated bioassay used dose-response regression lines to calculate LC(50) and LC(90) values for novaluron. Mean LC(50s) for glass vial bioassays ranged from 44.70 ± 3.58 to 66.54 ± 4.19 µg/vial, while mean LC(50s) for diet-incorporated bioassays ranged from 12.10 ± 0.77 to 17.63 ± 2.42 µg/200 ml of artificial diet. A comparison of LC(50) values from the same field population screened using both bioassay methods failed to show a relationship. LC(50) values from field locations were compared with a historically susceptible population from Crossett, AR. Results indicated that considerable variability in susceptibility to novaluron exists within field populations of tarnished plant bugs across the Delta, including some locations with lower LC(50) values than a historically susceptible population.


Assuntos
Heterópteros , Inseticidas , Compostos de Fenilureia , Animais , Arkansas , Heterópteros/crescimento & desenvolvimento , Resistência a Inseticidas , Dose Letal Mediana , Louisiana , Mississippi , Ninfa
2.
Insects ; 15(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667395

RESUMO

In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.

3.
J Econ Entomol ; 106(1): 382-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448055

RESUMO

Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Modelos Biológicos , Mariposas , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Feminino , Herbivoria , Resistência a Inseticidas , Larva , Masculino , Plantas Geneticamente Modificadas , Medição de Risco
4.
BMC Res Notes ; 16(1): 125, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370172

RESUMO

OBJECTIVE: The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a pest damaging many cultivated crops in North America. Although partial transcriptome data are available for this pest, a genome assembly was not available for this species. This assembly of a high-quality chromosome-length genome of TPB is aimed to develop the genetic resources that can provide the foundation required for advancing research on this species. RESULTS: The initial genome of TPB assembled with paired-end nucleotide sequences generated with Illumina technology was scaffolded with Illumina HiseqX reads generated from a proximity ligated (HiC) library to obtain a high-quality genome assembly. The final assembly contained 3963 scaffolds longer than 1 kbp to yield a genome of 599.96 Mbp. The N50 of the TPB genome assembly was 35.64 Mbp and 98.68% of the genome was assembled into 17 scaffolds larger than 1 Mbp. This megabase scaffold number is the same as the number of chromosomes observed in karyotyping of this insect. The TPB genome is known to have high repetitive DNA content, and the reduced assembled genome size compared to flowcytometric estimates of approximately 860 Mbp may be due to the collapsed assembly of highly similar regions.


Assuntos
Heterópteros , Animais , Heterópteros/genética , Biblioteca Gênica , Genoma de Planta , Cromossomos
5.
BMC Res Notes ; 15(1): 115, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317820

RESUMO

OBJECTIVE: The redbanded stink bug (RBSB), Piezodorus guildinii (Hemiptera: Pentatomidae), is native to the Caribbean Basin and is currently considered an invasive pest in Florida, Louisiana, Mississippi, and Texas in the southern United States. Although RBSB is an economically important invasive pest in the USA, relatively few studies have been conducted to understand molecular mechanisms, population genetic structure, and the genetic basis of resistance to insecticides. The objective of this work was to obtain a high-quality genome assembly to develop genomic resources to conduct population genetic, genomic, and physiological studies of the RBSB. RESULTS: The genome of RBSB was sequenced with Pacific Biosciences technology followed by two rounds of scaffolding using Chicago libraries and HiC proximity ligation to obtain a high-quality assembly. The genome assembly contained 800 scaffolds larger than 1 kbp and the N50 was 170.84 Mbp. The largest scaffold was 222.22 Mbp and 90% of the genome was included in the 7 scaffolds larger than 118 Mbp. The number of megabase scaffolds also matched the number of chromosomes in this insect. The genome sequence will facilitate the development of resources to conduct studies on genetics, transcriptomics, and physiology of RBSB.


Assuntos
Heterópteros , Inseticidas , Animais , Cromossomos , Heterópteros/genética , Louisiana , Glycine max
6.
J Econ Entomol ; 114(2): 723-727, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438020

RESUMO

The subfamily Plusiinae of the moth family Noctuidae is made up 400 species worldwide. Two species of the subfamily, the soybean looper, Chrysodeixis includens (Walker), and the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), are important defoliating insect pests of various field crops and have been the subject of previous Plusiinae surveys in the Southern U.S. Soybean fields were sampled in the Mississippi Delta from 2010 to 2012 to determine the temporal occurrence of various Plusiinae species on soybean. As in previous surveys, C. includens was the most common Plusiinae species in soybean during the 3-yr survey, especially in late season collections (July-September). Rachiplusia ou (Guenée) (Lepidoptera: Noctuidae) was the predominant species observed in early season collections (May-early July). Populations of R. ou during the first sample dates during 2010 were much higher than those observed during the other years of the survey. Only three collected larvae successfully developed into T. ni adults, one each collected during May, June, and July. Although R. ou was not commonly reported in previous studies on soybean, it occurred in low numbers during June and July during the 3-yr study. The temporal occurrence and species composition followed a predictable pattern in all 3 yr of the study.


Assuntos
Glycine max , Mariposas , Animais , Larva , Mississippi , Rios
7.
Environ Entomol ; 50(4): 860-867, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33960393

RESUMO

Noctuid pests, including tobacco budworm (Chloridea virescens (Fab.)) and bollworm (Helicoverpa zea (Boddie)), are significant pests of southern row crops including cotton (Gossypium hirsutum L.), corn (Zea mays L.), and soybean (Glycine max (L.) Moench.). This pest complex is seasonally monitored through Hartstack traps that are baited with synthetic lepidopteran pheromones across the southern United States. We examined bycatch from the noctuid traps deployed across the Mississippi Delta in 2015, 2016, and 2017 for the presence of bees. The most abundant species collected were honey bees (Apis mellifera L.), bumble bees (Bombus spp.), and long-horned bees (Melissodes spp.); these three genera accounted for 82.4% of specimens collected. We also evaluated the proportion of local- and landscape-level habitats on the abundance and richness of the bees caught as bycatch. The proportion of natural and semi-natural habitat affected the abundance and richness of bees collected at the landscape level, but not at more local scales. Additional research is needed to better understand these interactions between bycatch and landscape factors to minimize non-target collections.


Assuntos
Himenópteros , Mariposas , Animais , Abelhas , Ecossistema , Gossypium , Feromônios
8.
PLoS One ; 14(3): e0212567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865645

RESUMO

Interpreting variable laboratory measurements of Helicoverpa zea Boddie susceptibility to toxins from Bacillus thuringiensis Berliner (Bt) has been challenging due to a lack of clear evidence to document declining field control. Research that links laboratory measurements of susceptibility to survival on Bt crops is vital for accurate characterization and any subsequent response to the occurrence of an implied H. zea resistance event. In this study, H. zea survival and the resultant damage to plant fruiting structures of non-Bt, Bollgard II, and Bollgard III cottons from two insect colonies with differing levels of laboratory susceptibility to Bt toxins were evaluated in large field cages. Laboratory bioassays revealed resistance ratios of 2.04 and 622.14 between the two H. zea colonies for Dipel DF and Cry1Ac, respectively. Differences between the two H. zea colonies measured via bioassays with Bollgard II and Bollgard III cotton leaf tissue in the laboratory were not statistically discernable. However, there was 17.6% and 5.3% lower larval mortality in Bollgard II and Bollgard III for the feral relative to the laboratory colony of H. zea, respectively. Although H. zea larval numbers in cages infested with the laboratory susceptible colony did not differ between the two Bt cottons, there were fewer larvae per 25 plants in Bollgard III than in Bollgard II cotton in cages containing tolerant insects. Cages infested with tolerant H. zea moths had higher numbers of total larvae than those containing the laboratory susceptible colony in both Bollgard II and Bollgard III cottons. Bollgard II and Bollgard III cottons received 77.4% and 82.7% more total damage to total plant fruiting structures in cages infested with tolerant insects relative to those containing the laboratory susceptible colony. The damage inflicted to fruiting structures on Bollgard III cotton by a feral H. zea colony with decreased measurements of laboratory susceptibility to Dipel DF and Cry1Ac indicate that the addition of Vip3A to third generation Bt cottons may not provide sufficient control in situations where infestations levels are high.


Assuntos
Proteínas de Bactérias , Endotoxinas , Gossypium , Lepidópteros/crescimento & desenvolvimento , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Endotoxinas/biossíntese , Endotoxinas/genética , Gossypium/genética , Gossypium/metabolismo , Gossypium/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Zea mays/genética , Zea mays/metabolismo , Zea mays/parasitologia
9.
J Econ Entomol ; 111(6): 2799-2808, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30165452

RESUMO

A laboratory colony of tarnished plant bugs reared solely on a meridic diet was exposed to acephate, imidacloprid, permethrin, sulfoxaflor, and thiamethoxam in dose-response experiments using floral-foam, glass-vial, and dipped-leaf assays. Results indicated that different assay methods produced different relative results across the different insecticides. Dose- and time-response regression models also indicated that length of exposure of tarnished plant bugs to insecticide-treated plant tissue is important. Time of exposure required to reach an LC90 at estimated recommended field rates suggested that the recommended lower field rate of acephate (0.56 kg ai/ha) would reach an LC90 of exposed tarnished plant bugs between 48 and 96 h post initial exposure. An LC90 of tarnished plant bugs exposed to permethrin (0.11 kg ai/ha) was not predicted from the regression modes over the 168-h observation; lower recommended application rates of imidacloprid (0.053 kg ai/ha), sulfoxaflor (0.053 kg ai/ha), and thiamethoxam (0.042 kg ai/ha) reached projected LC90s between 96 and 168 h of exposure. Collectively, the results of this study corroborate current existing procedures for tracking tarnished plant bug resistance to insecticides, but also illustrate the importance of additional field studies that empirically associate assay results to projected field control.


Assuntos
Hemípteros , Inseticidas , Testes de Toxicidade/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA