Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(11): e1002348, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072967

RESUMO

Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.


Assuntos
Arabidopsis/imunologia , Oomicetos/metabolismo , Doenças das Plantas/imunologia , Proteínas/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/microbiologia , Sistemas de Secreção Bacterianos , Brassica napus/imunologia , Brassica napus/microbiologia , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Glucanos/biossíntese , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Oomicetos/genética , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/enzimologia , Pseudomonas syringae/imunologia , Proteínas Recombinantes de Fusão/metabolismo
2.
Mol Plant Pathol ; 10(4): 449-57, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523099

RESUMO

The RPP13 [recognition of Hyaloperonospora arabidopsidis (previously known as Peronospora parasitica)] resistance (R) gene in Arabidopsis thaliana exhibits the highest reported level of sequence diversity among known R genes. Consistent with a co-evolutionary model, the matching effector protein ATR13 (A. thaliana-recognized) from H. arabidopsidis reveals extreme levels of allelic diversity. We isolated 23 new RPP13 sequences from a UK metapopulation, giving a total of 47 when combined with previous studies. We used these in functional studies of the A. thaliana accessions for their resistance response to 16 isolates of H. arabidopsidis. We characterized the molecular basis of recognition by the expression of the corresponding ATR13 genes from these 16 isolates in these host accessions. This allowed the determination of which alleles of RPP13 were responsible for pathogen recognition and whether recognition was dependent on the RPP13/ATR13 combination. Linking our functional studies with phylogenetic analysis, we determined that: (i) the recognition of ATR13 is mediated by alleles in just a single RPP13 clade; (ii) RPP13 alleles in other clades have evolved the ability to detect other pathogen ATR protein(s); and (iii) at least one gene, unlinked to RPP13 in A. thaliana, detects a different subgroup of ATR13 alleles.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Epistasia Genética , Redes Reguladoras de Genes , Variação Genética , Interações Hospedeiro-Patógeno/genética , Oomicetos/genética , Alelos , Proteínas de Arabidopsis/genética , Sequência de Bases , Filogenia
3.
Mol Plant Pathol ; 9(4): 511-23, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705864

RESUMO

RPP13, a member of the cytoplasmic class of disease resistance genes, encodes one of the most variable Arabidopsis proteins so far identified. This variability is matched in ATR13, the protein from the oomycete downy mildew pathogen Hyaloperonospora parasitica recognized by RPP13, suggesting that these proteins are involved in tight reciprocal coevolution. ATR13 exhibits five domains: an N-terminal signal peptide, an RXLR motif, a heptad leucine/isoleucine repeat, an 11-amino-acid repeated sequence and a C-terminal domain. We show that the conserved RXLR-containing domain is dispensable for ATR13-mediated recognition, consistent with its role in transport into the plant cytoplasm. Sequencing ATR13 from 16 isolates of H. parasitica revealed high levels of amino acid diversity across the entire protein. The leucines/isoleucines of the heptad leucine repeat were conserved, and mutation of particular leucine or isoleucine residues altered recognition by RPP13. Natural variation has not exploited this route to detection avoidance, suggesting a key role of this domain in pathogenicity. The extensive variation in the 11-amino-acid repeat units did not affect RPP13 recognition. Domain swap analysis showed that recognition specificity lay in the C-terminal domain of ATR13. Variation analyses combined with functional assays allowed the identification of four amino acid positions that may play a role in recognition specificity. Site-directed mutagenesis confirmed that a threonine residue is absolutely required for RPP13 recognition and that recognition can be modulated by the presence of either an arginine or glutamic acid at other sites. Mutations in these three amino acids had no effect on the interaction of ATR13 with a resistance gene unlinked to RPP13, consistent with their critical role in determining RPP13-Nd recognition specificity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Oomicetos/genética , Doenças das Plantas/genética , Sequência de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Variação Genética , Imunidade Inata/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Treonina/genética
4.
Plant Cell ; 17(6): 1839-50, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15894715

RESUMO

The perception of downy mildew avirulence (Arabidopsis thaliana Recognized [ATR]) gene products by matching Arabidopsis thaliana resistance (Recognition of Peronospora parasitica [RPP]) gene products triggers localized cell death (a hypersensitive response) in the host plant, and this inhibits pathogen development. The oomycete pathogen, therefore, is under selection pressure to alter the form of these gene products to prevent detection. That the pathogen maintains these genes indicates that they play a positive role in pathogen survival. Despite significant progress in cloning plant RPP genes and characterizing essential plant components of resistance signaling pathways, little progress has been made in identifying the oomycete molecules that trigger them. Concluding a map-based cloning effort, we have identified an avirulence gene, ATR1NdWsB, that is detected by RPP1 from the Arabidopsis accession Niederzenz in the cytoplasm of host plant cells. We report the cloning of six highly divergent alleles of ATR1NdWsB from eight downy mildew isolates and demonstrate that the ATR1NdWsB alleles are differentially recognized by RPP1 genes from two Arabidopsis accessions (Niederzenz and Wassilewskija). RPP1-Nd recognizes a single allele of ATR1NdWsB; RPP1-WsB also detects this allele plus three additional alleles with divergent sequences. The Emco5 isolate expresses an allele of ATR1NdWsB that is recognized by RPP1-WsB, but the isolate evades detection in planta. Although the Cala2 isolate is recognized by RPP1-WsA, the ATR1NdWsB allele from Cala2 is not, demonstrating that RPP1-WsA detects a novel ATR gene product. Cloning of ATR1NdWsB has highlighted the presence of a highly conserved novel amino acid motif in avirulence proteins from three different oomycetes. The presence of the motif in additional secreted proteins from plant pathogenic oomycetes and its similarity to a host-targeting signal from malaria parasites suggest a conserved role in pathogenicity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Inata/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Sequência de Aminoácidos , Arabidopsis/microbiologia , Sequência de Bases , Sequência Conservada/genética , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/isolamento & purificação , Especificidade da Espécie
5.
Mol Plant Pathol ; 4(6): 501-7, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20569409

RESUMO

SUMMARY Peronospora parasitica is an obligate biotrophic oomycete that causes downy mildew in Arabidopsis thaliana and Brassica species. Our goal is to identify P. parasitica (At) genes that are involved in pathogenicity. We used suppression subtractive hybridization (SSH) to generate cDNA libraries enriched for in planta-expressed parasite genes and up-regulated host genes. A total of 1345 clones were sequenced representing cDNA fragments from 25 putative P. parasitica (At) genes (Ppat 1-25) and 618 Arabidopsis genes. Analyses of expression patterns showed that 15 Ppats were expressed only in planta. Eleven Ppats encoded peptides with homology (BlastP values < 1e-05) to proteins with roles in membrane or cell wall biosynthesis, amino acid metabolism, osmoregulation, cation transport, phosphorylation or protein secretion. The other 14 represent potentially novel oomycete genes with none having homologues in an extensive Phytophthora species EST database. A full-length sequence was obtained for four Ppats and each encoded small cysteine-rich proteins with amino-terminal signal peptide sequences. These results demonstrate the utility of SSH in obtaining novel in planta-expressed genes from P. parasitica (At) that complements other gene discovery approaches such as EST sequencing.

6.
Science ; 306(5703): 1957-60, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15591208

RESUMO

Plants are constantly exposed to attack by an array of diverse pathogens but lack a somatically adaptive immune system. In spite of this, natural plant populations do not often suffer destructive disease epidemics. Elucidating how allelic diversity within plant genes that function to detect pathogens (resistance genes) counteracts changing structures of pathogen genes required for host invasion (pathogenicity effectors) is critical to our understanding of the dynamics of natural plant populations. The RPP13 resistance gene is the most polymorphic gene analyzed to date in the model plant Arabidopsis thaliana. Here we report the cloning of the avirulence gene, ATR13, that triggers RPP13-mediated resistance, and we show that it too exhibits extreme levels of amino acid polymorphism. Evidence of diversifying selection visible in both components suggests that the host and pathogen may be locked in a coevolutionary conflict at these loci, where attempts to evade host resistance by the pathogen are matched by the development of new detection capabilities by the host.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Evolução Biológica , Proteínas Fúngicas/genética , Genes Fúngicos , Genes de Plantas , Oomicetos/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biolística , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Dados de Sequência Molecular , Oomicetos/patogenicidade , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Sinais Direcionadores de Proteínas , Seleção Genética
7.
Fungal Genet Biol ; 38(1): 33-42, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12553934

RESUMO

In Peronospora parasitica (At) (downy mildew), the genetic determinants of cultivar-specific recognition by Arabidopsis thaliana are the Arabidopsis thaliana-recognised (ATR) avirulence genes. We describe the identification of 10 amplified fragment length polymorphism (AFLP) markers that define a genetic mapping interval for the ATR1Nd avirulence allele, the presence of which is perceived by the RPP1Nd resistance gene. Furthermore, we have constructed a P. parasitica (At) bacterial artificial chromosome (BAC) library comprising over 630Mb of cloned DNA. We have isolated 16 overlapping clones from the BAC library that form a contig spanning the genetic interval. BAC sequence-derived markers and a total mapping population of 311 F(2) individuals were used to refine the ATR1Nd locus to a 1cM interval that is represented by four BAC clones and spans less than 250kb of DNA. This work demonstrates that map-based cloning techniques are feasible in this organism and provides the critical foundations for cloning ATR1Nd using such a strategy.


Assuntos
Arabidopsis/microbiologia , DNA/genética , Phytophthora/genética , Alelos , Arabidopsis/genética , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Biblioteca Genômica , Oomicetos/isolamento & purificação , Oomicetos/patogenicidade , Mapeamento Físico do Cromossomo , Phytophthora/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA