Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
AJR Am J Roentgenol ; 222(3): e2330481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197760

RESUMO

BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.


Assuntos
Estenose Coronária , Placa Aterosclerótica , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Angiografia por Tomografia Computadorizada/métodos , Estudos Retrospectivos , Constrição Patológica , Tomografia Computadorizada por Raios X/métodos , Estenose Coronária/diagnóstico por imagem
2.
Radiology ; 307(2): e222030, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719292

RESUMO

Background Photon-counting detector (PCD) CT provides comprehensive spectral data with every acquisition, but studies evaluating myocardial extracellular volume (ECV) quantification with use of PCD CT compared with an MRI reference remain lacking. Purpose To compare ECV quantification for myocardial tissue characterization between a first-generation PCD CT system and cardiac MRI. Materials and Methods In this single-center prospective study, adults without contraindication to iodine-based contrast media underwent same-day cardiac PCD CT and MRI with native and postcontrast T1 mapping and late gadolinium enhancement for various clinical indications for cardiac MRI (the reference standard) between July 2021 and January 2022. Global and midventricular ECV were assessed with use of three methods: single-energy PCD CT, dual-energy PCD CT, and MRI T1 mapping. Quantitative comparisons among all techniques were performed. Correlation and reliability between different methods of ECV quantification were assessed with use of the Pearson correlation coefficient (r) and the intraclass correlation coefficient. Results The final sample included 29 study participants (mean age ± SD, 54 years ± 17; 15 men). There was a strong correlation of ECV between dual- and single-energy PCD CT (r = 0.91, P < .001). Radiation dose was 40% lower with dual-energy versus single-energy PCD CT (volume CT dose index, 10.1 mGy vs 16.8 mGy, respectively; P < .001). In comparison with MRI, dual-energy PCD CT showed strong correlation (r = 0.82 and 0.91, both P < .001) and good to excellent reliability (intraclass correlation coefficients, 0.81 and 0.90) for midventricular and global ECV quantification, but it overestimated ECV by approximately 2%. Single-energy PCD CT showed similar relationship with MRI but underestimated ECV by 3%. Conclusion Myocardial tissue characterization with photon-counting detector CT-based quantitative extracellular volume analysis showed a strong correlation to MRI. © RSNA, 2023 Supplemental material is available for this article.


Assuntos
Meios de Contraste , Gadolínio , Masculino , Adulto , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
3.
Eur Radiol ; 33(4): 2469-2477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462045

RESUMO

OBJECTIVES: To assess the impact of scan modes and reconstruction kernels using a novel dual-source photon-counting detector CT (PCD-CT) on lumen visibility and sharpness of different stent sizes. METHODS: A phantom containing six balloon-expandable stents (2.5 to 9 mm diameter) in silicone tubing was scanned on a PCD-CT with standard (0.6 mm and 0.4 mm thicknesses) and ultra-high-resolution (0.2 mm thickness) modes. With the use of increasing contrast medium concentrations, densities of 0, 200, 400, and 600 HU were achieved. Standard-resolution scans were reconstructed using increasing sharpness kernels, using both polyenergetic quantitative soft tissue "conventional" ((Qr40c(0.6 mm), Qr40c(0.4 mm), Qr72c(0.2 mm)) and vascular (Bv) virtual monoenergetic reconstructions (Bv44m(0.4 mm), Bv60m(0.4 mm)) at 70 keV. In-stent lumen visibility, sharpness (max. ΔHU of the stent measured in profile plots), and in-stent noise (standard deviation of HU) were measured. RESULTS: In-stent lumen visibility was highest for Qr72c(0.2 mm) (86.5 ± 2.8% to 88.3 ± 2.6%) and in Bv60m(0.4 mm) reconstructions (77.3 ± 2.9 to 82.7 ± 2.5%). Lumen visibility was lowest in the smallest stent (2.5 mm) ranging from 54.1% in Qr40c(0.6 mm) to 74.1% in Qr72c(0.2 mm) and highest in the largest stent (9 mm) ranging from 93.8% in Qr40c(0.6 mm) to 99.1% in the Qr72c(0.2 mm) series. Lumen visibility decreased by 2.1% for every 200-HU increase in lumen attenuation. Max. ΔHU between stents and stent lumen was highest in Qr72c(0.2 mm) (ΔHU 892 ± 504 to 1526 ± 517) and Bv60m(0.4 mm) series (ΔHU 480 ± 357 to 1030 ± 344). Improvement of lumen visibility and sharpness in UHR and Bv60m(0.4 mm) series was strongest in smaller stent sizes. CONCLUSION: UHR acquisition mode and sharp reconstruction kernels on a novel PCD-CT system significantly improve in-stent lumen visibility and sharpness-especially for smaller stent sizes. KEY POINTS: • In-stent lumen visibility and sharpness of stents significantly improve using sharp reconstruction kernels (Bv60) and ultra-high-resolution mode in photon-counting detector computed tomography. • The observed improvement of stent-lumen visibility was highest in smaller stent sizes.


Assuntos
Stents , Tomografia Computadorizada por Raios X , Humanos , Angiografia Coronária/métodos , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste , Imagens de Fantasmas
4.
AJR Am J Roentgenol ; 218(5): 822-829, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877869

RESUMO

BACKGROUND. Epicardial adipose tissue (EAT) attenuation is a vascular inflammation marker predictive of adverse cardiac events. The fat attenuation index (FAI) assesses fat attenuation for predefined coronary segments. Photon-counting detector (PCD) CT uses routine virtual monoenergetic image (VMI) reconstructions. VMI energy level may affect EAT attenuation and FAI measurements. OBJECTIVE. The purpose of this article was to assess EAT attenuation and FAI measurements at different monoenergetic energy levels in patients undergoing coronary CTA using a first-generation whole-body dual-source PCD CT scanner. METHODS. An anthropomorphic phantom at two sizes with a fat insert was imaged on a first-generation dual-source PCD CT scanner and, as a reference, on a conventional energy-integrating detector (EID) CT scanner at 120 kV. Thirty patients (11 women, 19 men; mean age, 48 ± 10 years; Agatston score < 60) who underwent an ECG-gated unenhanced calcium-scoring scan and contrast-enhanced coronary CTA by PCD CT were retrospectively evaluated. VMIs from 55 to 80 keV at 5-keV increments were reconstructed. EAT attenuation was manually measured on unenhanced and contrast-enhanced images. FAI was calculated using semiautomated software. RESULTS. The attenuation of the phantom fat insert was -69 HU for the reference EID CT; the closest attenuation for PCD CT was observed at 70 keV for the small (-69 HU) and large (-70 HU) phantoms. In patients, EAT attenuation increased for unenhanced acquisition from -111 ± 11 HU at 55 keV to -82 ± 9 HU at 80 keV and for contrast-enhanced acquisition from -104 ± 11 HU at 55 keV to -81 ± 9 HU at 80 keV. The mean attenuation difference between unenhanced and contrast-enhanced scans decreased with increasing energy level (from 7 ± 12 HU to 1 ± 10 HU). The FAI increased from -89 ± 8 HU at 55 keV to -77 ± 12 HU at 80 keV for the right coronary artery, -95 ± 11 HU at 55 keV to -85 ± 11 HU at 80 keV for the left anterior descending artery, and -87 ± 10 HU at 55 keV to -80 ± 12 HU at 80 keV for the circumflex artery. CONCLUSION. EAT attenuation and FAI measurements using PCD CT are impacted by VMI energy level and contrast enhancement. Use of VMI reconstruction at 70 keV provides fat attenuation approximating conventional polychromatic measurements. CLINICAL IMPACT. The findings may help standardize evaluation of pericoronary inflammation by PCD CT as a measure of patients' cardiac risk.


Assuntos
Tecido Adiposo , Tomografia Computadorizada por Raios X , Tecido Adiposo/diagnóstico por imagem , Adulto , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
Eur Radiol ; 30(11): 5834-5840, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32468107

RESUMO

PURPOSE: We prospectively investigate the feasibility of a patient specific automated tube voltage selection (ATVS)-based coronary artery calcium scoring (CACS) protocol, using a kV-independent reconstruction algorithm, to achieve significant dose reductions while maintaining the overall cardiac risk classification. METHODS: Forty-three patients (mean age, 61.8 ± 9.0 years; 40% male) underwent a clinically indicated CACS scan at 120kVp, as well as an additional CACS acquisition using an individualized tube voltage between 70 and 130kVp based on the ATVS selection (CARE-kV). Datasets of the additional CACS scans were reconstructed using a kV-independent algorithm that allows for calcium scoring without changing the weighting threshold of 130HU, regardless of the tube voltage chosen for image acquisition. Agatston scores and radiation dose derived from the different ATVS-based CACS studies were compared to the standard acquisition at 120kVp. RESULTS: Thirteen patients displayed a score of 0 and were correctly identified with the ATVS protocol. Agatston scores derived from the standard 120kVp (median, 33.4; IQR, 0-289.7) and the patient-tailored kV-independent protocol (median, 47.5; IQR, 0-287.5) showed no significant differences (p = 0.094). The intra-class correlation for Agatston scores derived from the two different protocols was excellent (ICC = 0.99). The mean dose-length-product was 29.8 ± 11.9 mGy × cm using the ATVS protocol and 31.7 ± 11.4 mGy × cm using the standard 120kVp protocol (p < 0.001). Additionally, 95% of patients were classified into the same risk category (0, 1-10, 11-100, 101-400, or > 400) using the patient-tailored protocol. CONCLUSIONS: ATVS-based CACS, using a kV-independent algorithm, allows for high accuracy compared to the standard 120kVp scanning, while significantly reducing radiation dose parameters. KEY POINTS: • ATVS allows for CT scanning with reduced radiation dose values. • KV-independent CACS is feasible at any tube voltage between 70 and 130 kVp. • ATVS applied to kV-independent CACS can significantly reduce the radiation dose.


Assuntos
Algoritmos , Cálcio/metabolismo , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico , Vasos Coronários/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
J Org Chem ; 85(11): 6844-6853, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32412751

RESUMO

LCZ696 is a novel treatment for patients suffering from heart failure that combines the two active pharmaceutical ingredients sacubitril and valsartan in a single chemical compound. While valsartan is an established drug substance, a new manufacturing process suitable for large-scale commercial production had to be developed for sacubitril. The use of chemocatalysis, biocatalysis, and flow chemistry as state-of-the-art technologies allowed to efficiently build up the structure of sacubitril and achieve the defined performance targets.


Assuntos
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Biocatálise , Compostos de Bifenilo , Combinação de Medicamentos , Humanos , Tetrazóis , Valsartana
7.
Neuroradiology ; 59(2): 169-176, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28091696

RESUMO

INTRODUCTION: Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. METHODS: All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. RESULTS: All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNReye globe/air did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. CONCLUSION: Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality.


Assuntos
Doenças dos Seios Paranasais/diagnóstico por imagem , Doses de Radiação , Proteção Radiológica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Estanho
8.
Eur Radiol ; 25(1): 178-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194708

RESUMO

OBJECTIVES: To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. METHODS: Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. RESULTS: The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63%/39% lower for the third generation examination as compared to the first and second generation DSCT. CONCLUSIONS: Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. KEY POINTS: • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Tomografia Computadorizada Multidetectores/métodos , Osso Temporal/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Reprodutibilidade dos Testes
9.
Radiology ; 273(2): 373-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24877984

RESUMO

PURPOSE: To prospectively evaluate radiation and contrast medium requirements for performing high-pitch coronary computed tomographic (CT) angiography at 70 kV using a third-generation dual-source CT system in comparison to a second-generation dual-source CT system. MATERIALS AND METHODS: All patients gave informed consent for this institutional review board-approved study. Forty-five patients (median age, 52 years; 27 men) were imaged in high-pitch mode with a third-generation dual-source CT system at 70 kV (n = 15) or with a second-generation dual-source CT system at 80 or 100 kV (n = 15 for each). Tube voltage was based on body mass index: 80 or 70 kV for less than 26 kg/m(2) versus 100 kV for 26-30 kg/m(2). For the 80- and 100-kV protocols, 80 mL of contrast material was injected, versus 45 mL for the 70-kV protocol. Data were reconstructed by using a second-generation iterative reconstruction algorithm for second-generation dual-source CT and a recently introduced third-generation iterative reconstruction algorithm for third-generation dual-source CT. Objective image quality was measured for various regions of interest, and subjective image quality was evaluated with a five-point Likert scale. RESULTS: The signal-to-noise ratio of the coronary CT angiography studies acquired with 70 kV was significantly higher (70 kV: 14.3-17.6 vs 80 kV: 7.1-12.9 vs 100 kV: 9.8-12.9; P < .0497) than those acquired with the other two protocols for all coronary arteries. Qualitative image quality analyses revealed no significant differences between the three CT angiography protocols (median score, 5; P > .05). The mean effective dose was 75% and 108% higher (0.92 mSv ± 0.3 [standard deviation] and 0.78 mSv ± 0.2 vs 0.44 mSv ± 0.1; P < .0001), respectively, for the 80- and 100-kV CT angiography protocols than for the 70-kV CT angiography protocol. CONCLUSION: In nonobese patients, third-generation high-pitch coronary dual-source CT angiography at 70 kV results in robust image quality for studying the coronary arteries, at significantly reduced radiation dose (0.44 mSv) and contrast medium volume (45 mL), thus enabling substantial radiation dose and contrast medium savings as compared with second-generation dual-source CT.


Assuntos
Angiografia Coronária/métodos , Doença das Coronárias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Angiografia Coronária/instrumentação , Eletrocardiografia , Feminino , Humanos , Iopamidol/análogos & derivados , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação
10.
Radiology ; 270(2): 387-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471388

RESUMO

PURPOSE: To investigate in vitro and in vivo the use of image-based and raw data-based iterative reconstruction algorithms for quantification of coronary artery calcium by using the Agatston score and subsequent cardiac risk stratification. MATERIALS AND METHODS: In vitro data were obtained by using a moving anthropomorphic cardiac phantom containing calcium inserts of different concentrations and sizes. With institutional review board approval and HIPAA compliance, coronary calcium imaging data of 110 consecutive patients (mean age ± standard deviation, 58.2 years ± 9.8; 48 men) were reconstructed with filtered back projection (FBP), iterative reconstruction in image space (IRIS), and sinogram-affirmed iterative reconstruction (SAFIRE). Image noise was measured and the Agatston score was obtained for all reconstructions. Assignment to Agatston scores and percentile-based cardiac risk categories was compared. Statistical analysis included the Cohen κ coefficient and Friedman and Wilcoxon testing. RESULTS: In vitro, mean Agatston scores ± standard deviation for FBP (638.9 ± 9.6), IRIS (622.7 ± 15.2), and SAFIRE (631.4 ± 17.6) were comparable (P = .30). The smallest phantom calcifications were more frequently detected when iterative reconstruction techniques were used. The Agatston scores in the patient cohort were not significantly different among FBP, IRIS, and SAFIRE in paired comparisons (median Agatston score [25th and 75th percentiles]: 76.0 [20.6, 243.9], 76.4 [22, 249.3], and 75.7 [21.5, 49.1], respectively; P = .20 each). Comparison of categorization based on Agatston score percentiles showed excellent agreement for both IRIS and SAFIRE with FBP (κ = 0.975 [0.942-1.00] and κ = 0.963 [0.922-1.00], respectively). The mean effective dose was 1.02 mSv ± 0.51. Mean image noise was significantly (P < .001) higher with FBP than that with iterative reconstructions. CONCLUSION: In comparison with FBP, iterative reconstruction techniques do not have a profound effect on the reproducible quantification of coronary calcium according to Agatston score and subsequent cardiac risk classification, although risk reclassification may occur in a small subset of subjects.


Assuntos
Algoritmos , Calcinose/diagnóstico por imagem , Doença das Coronárias/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Medição de Risco
11.
Eur Radiol ; 24(11): 2953-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25038859

RESUMO

OBJECTIVES: To evaluate in-stent lumen visibility of 27 modern and commonly used coronary stents (16 individual stent types, two stents at six different sizes each) utilising a third-generation dual-source CT system. METHODS: Stents were implanted in a plastic tube filled with contrast. Examinations were performed parallel to the system's z-axis for all stents (i.e. 0°) and in an orientation of 90° for stents with a diameter of 3.0 mm. Two stents were evaluated in different diameters (2.25 to 4.0 mm). Examinations were acquired with a collimation of 96 × 0.6 mm, tube voltage of 120 kVp with 340 mAs tube current. Evaluation was performed using a medium-soft (Bv40), a medium-sharp (Bv49) and a sharp (Bv59) convolution kernel optimised for vascular imaging. RESULTS: Mean visible stent lumen of stents with 3.0 mm diameter ranged from 53.3 % (IQR 48.9 - 56.7 %) to 73.9 % (66.7 - 76.7 %), depending on the kernel used at 0°, and was highest at an orientation of 90° with 80.0 % (75.6 - 82.8 %) using the Bv59 kernel, strength 4. Visible stent lumen declined with decreasing stent size. CONCLUSIONS: Use of third-generation dual-source CT enables stent lumen visibility of up to 80 % in metal stents and 100 % in bioresorbable stents. KEY POINTS: • Blooming artefacts impair in-stent lumen visibility of coronary stents in CT angiography. • CT enables stent lumen visibility of up to 80 % in metal stents. • Stent lumen visibility varies with stent orientation and size. • CT angiography may be a valid alternative for detecting in-stent restenosis.


Assuntos
Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem , Imagens de Fantasmas , Stents , Tomografia Computadorizada por Raios X/métodos , Artefatos , Estenose Coronária/cirurgia , Humanos , Desenho de Prótese
12.
Eur Radiol ; 24(8): 1889-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24838737

RESUMO

OBJECTIVES: To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). METHODS: First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. RESULTS: In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. CONCLUSIONS: Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. KEY POINTS: • CCTA is feasible with the turbo high-pitch mode. • Turbo high-pitch CCTA provides diagnostic image quality up to 73 bpm. • The radiation dose of high-pitch CCTA is 0.6 mSv on average.


Assuntos
Artefatos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Imageamento Tridimensional , Tomografia Computadorizada Multidetectores/métodos , Imagens de Fantasmas , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/fisiopatologia , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Reprodutibilidade dos Testes
13.
BMC Med Imaging ; 14: 30, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25178653

RESUMO

BACKGROUND: To investigate the impact of high pitch cardiac CT vs. retrospective ECG gated CT on the quantification of calcified vessel stenoses, with assessment of the influence of tube voltage, reconstruction kernel and heart rate. METHODS: A 4D cardiac movement phantom equipped with three different plaque phantoms (12.5%, 25% and 50% stenosis at different calcification levels), was scanned with a 128-row dual source CT scanner, applying different trigger types (gated vs. prospectively triggered high pitch), tube voltages (100-120 kV) and heart rates (50-90 beats per minute, bpm). Images were reconstructed using different standard (B26f, B46f, B70f) and iterative (I26f, I70f) convolution kernels. Absolute and relative plaque sizes were measured and statistically compared. Radiation dose associated with the different methods (gated vs. high pitch, 100 kV vs. 120 kV) were compared. RESULTS: Compared to the known diameters of the phantom plaques and vessels both CT-examination techniques overestimated the degrees of stenoses. Using the high pitch CT-protocol plaques appeared larger (0.09 ± 0.31 mm, 2 ± 8 percent points, PP) in comparison to the ECG-gated CT-scans. Reducing tube voltage had a similar effect, resulting in higher grading of the same stenoses by 3 ± 8 PP. In turn, sharper convolution kernels lead to a lower grading of stenoses (differences of up to 5%). Pairwise comparison of B26f and I26f, B46f and B70f, and B70f and I70f showed differences of 0-1 ± 6-8 PP of the plaque depiction. Motion artifacts were present only at 90 bpm high pitch experiments. High-pitch protocols were associated with significantly lower radiation doses compared with the ECG-gated protocols (258.0 mGy vs. 2829.8 mGy CTDIvol, p ≤ 0.0001). CONCLUSION: Prospectively triggered high-pitch cardiac CT led to an overestimation of plaque diameter and degree of stenoses in a coronary phantom. This overestimation is only slight and probably negligible in a clinical situation. Even at higher heart rates high pitch CT-scanning allowed reliable measurements of plaque and vessel diameters with only slight differences compared ECG-gated protocols, although motion artifacts were present at 90 bpm using the high pitch protocols.


Assuntos
Estenose Coronária/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Eletrocardiografia/métodos , Tomografia Computadorizada Quadridimensional/métodos , Calcificação Vascular/diagnóstico por imagem , Angiografia Coronária/métodos , Vasos Coronários/patologia , Tomografia Computadorizada Quadridimensional/instrumentação , Frequência Cardíaca , Humanos , Imagens de Fantasmas , Doses de Radiação
14.
Acad Radiol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906782

RESUMO

BACKGROUND: Cardiovascular CT is required for planning transcatheter aortic valve implantation (TAVI). PURPOSE: To compare image quality, suitability for TAVI planning, and radiation dose of photon-counting CT (PCCT) with that of dual-source CT (DSCT). MATERIAL AND METHODS: Retrospective study on consecutive TAVI candidates with aortic valve stenosis who underwent contrast-enhanced aorto-ilio-femoral PCCT and/or DSCT between 01/2022 and 07/2023. Signal-to-noise (SNR) and contrast-to-noise ratio (CNR) were calculated by standardized ROI analysis. Image quality and suitability for TAVI planning were assessed by four independent expert readers (two cardiac radiologists, two cardiologists) on a 5-point-scale. CT dose index (CTDI) and dose-length-product (DLP) were used to calculate effective radiation dose (eRD). RESULTS: 300 patients (136 female, median age: 81 years, IQR: 76-84) underwent 302 CT examinations, with PCCT in 202, DSCT in 100; two patients underwent both. Although SNR and CNR were significantly lower in PCCT vs. DSCT images (33.0 ± 10.5 vs. 47.3 ± 16.4 and 47.3 ± 14.8 vs. 59.3 ± 21.9, P < .001, respectively), visual image quality was higher in PCCT vs. DSCT (4.8 vs. 3.3, P < .001), with moderate overall interreader agreement among radiologists and among cardiologists (κ = 0.60, respectively). Image quality was rated as "excellent" in 160/202 (79.2%) of PCCT vs. 5/100 (5%) of DSCT cases. Readers found images suitable to depict the aortic valve hinge points and to map the femoral access path in 99% of PCCT vs. 85% of DSCT (P < 0.01), with suitability ranked significantly higher in PCCT vs. DSCT (4.8 vs. 3.3, P < .001). Mean CTDI and DLP, and thus eRD, were significantly lower for PCCT vs. DSCT (22.4 vs. 62.9; 519.4 vs. 895.5, and 8.8 ± 4.5 mSv vs. 15.3 ± 5.8 mSv; all P < .001). CONCLUSION: PCCT improves image quality, effectively avoids non-diagnostic CT imaging for TAVI planning, and is associated with a lower radiation dose compared to state-of-the-art DSCT. Radiologists and cardiologists found PCCT images more suitable for TAVI planning.

15.
Invest Radiol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38284879

RESUMO

PURPOSE: Prospective electrocardiography-triggering is one of the most commonly used cardiac computed tomography (CT) scan modes but can be susceptible to stair-step artifacts in the transition areas of an acquisition over multiple cardiac cycles. We evaluated a novel reconstruction algorithm to reduce the occurrence and severity of such artifacts in sequential coronary CT angiography. MATERIALS AND METHODS: In this institutional review board-approved, retrospective study, 50 consecutive patients (16 females; mean age, 58.9 ± 15.2) were included who underwent coronary CT angiography on a dual-source photon-counting detector CT in the sequential ultra-high-resolution mode with a detector collimation of 120 × 0.2 mm. Each scan was reconstructed without (hereafter called standard reconstruction) and with the novel ZeeFree reconstruction algorithm, which aims to minimize stair-step artifacts. The presence and extent of stair-step artifacts were rated by 2 independent, blinded readers on a 4-point discrete visual scale. The relationship between the occurrences of artifacts was correlated with the average and variability of heart rate and with patient characteristics. RESULTS: A total of 504 coronary segments were included into the analyses. In standard reconstructions, reader 1 reported stair-step artifacts in 40/504 (7.9%) segments, from which 12/504 led to nondiagnostic image quality (2.4% of all segments). Reader 2 reported 56/504 (11.1%) stair-step artifacts, from which 11/504 lead to nondiagnostic image quality (2.2% of all segments). With the ZeeFree algorithm, 9/12 (75%) and 8/11 (73%) of the nondiagnostic segments improved to a diagnostic quality for readers 1 and 2, respectively. The ZeeFree reconstruction algorithm significantly reduced the frequency and extent of stair-step artifacts compared with standard reconstructions for both readers (P < 0.001, each). Heart rate variability and body mass index were significantly related to the occurrence of stair-step artifacts (P < 0.05). CONCLUSIONS: Our study demonstrates the feasibility and effectiveness of a novel reconstruction algorithm leading to a significant reduction of stair-step artifacts and, hence, a reduction of coronary segments with a nondiagnostic image quality in sequential ultra-high-resolution coronary photon-counting detector CT angiography.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38389028

RESUMO

To intra-individually investigate the variation of coronary artery calcium (CAC), aortic valve calcium (AVC), and mitral annular calcium (MAC) scores and the presence of blur artifacts as a function of temporal resolution in patients undergoing non-contrast cardiac CT on a dual-source photon counting detector (PCD) CT. This retrospective, IRB-approved study included 70 patients (30 women, 40 men, mean age 78 ± 9 years) who underwent ECG-gated cardiac non-contrast CT with PCD-CT (gantry rotation time 0.25 s) prior to transcatheter aortic valve replacement. Each scan was reconstructed at a temporal resolution of 66 ms using the dual-source information and at 125 ms using the single-source information. Average heart rate and heart rate variability were calculated from the recorded ECG. CAC, AVC, and MAC were quantified according to the Agatston method on images with both temporal resolutions. Two readers assessed blur artifacts using a 4-point visual grading scale. The influence of average heart rate and heart rate variability on calcium quantification and blur artifacts of the respective structures were analyzed by linear regression analysis. Mean heart rate and heart rate variability during data acquisition were 76 ± 17 beats per minute (bpm) and 4 ± 6 bpm, respectively. CAC scores were smaller on 66 ms (median, 511; interquartile range, 220-978) than on 125 ms reconstructions (538; 203-1050, p < 0.001). Median AVC scores [2809 (2009-3952) versus 3177 (2158-4273)] and median MAC scores [226 (0-1284) versus 251 (0-1574)] were also significantly smaller on 66ms than on 125ms reconstructions (p < 0.001). Reclassification of CAC and AVC risk categories occurred in 4% and 11% of cases, respectively, whereby the risk category was always overestimated on 125ms reconstructions. Image blur artifacts were significantly less on 66ms as opposed to 125 ms reconstructions (p < 0.001). Intra-individual analyses indicate that temporal resolution significantly impacts on calcium scoring with cardiac CT, with CAC, MAC, and AVC being overestimated at lower temporal resolution because of increased motion artifacts eventually leading to an overestimation of patient risk.

17.
AJR Am J Roentgenol ; 201(4): W626-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059402

RESUMO

OBJECTIVE: The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. MATERIALS AND METHODS: Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. RESULTS: Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. CONCLUSION: For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.


Assuntos
Artefatos , Eletrônica/instrumentação , Aumento da Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
18.
Invest Radiol ; 58(11): 767-774, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222522

RESUMO

PURPOSE: The aim of this study was to assess the effect of temporal resolution on subjective and objective image quality of coronary computed tomography angiography (CCTA) in the ultra-high-resolution (UHR) mode with dual-source photon-counting detector (PCD) CT. MATERIALS AND METHODS: This retrospective, institutional review board-approved study evaluated 30 patients (9 women; mean age, 80 ± 10 years) undergoing UHR CCTA with a clinical dual-source PCD-CT scanner. Images were acquired with a tube voltage of 120 kV and using a collimation of 120 × 0.2 mm. Gantry rotation time was 0.25 seconds. Each scan was reconstructed using both single-source and dual-source data resulting in an image temporal resolution of 125 milliseconds and 66 milliseconds, respectively. The average heart rate and the heart rate variability were recorded. Images were reconstructed with a slice thickness of 0.2 mm, quantum iterative reconstruction strength level 4, and using the Bv64 and Bv72 kernel for patients without and with coronary stents, respectively. For subjective image quality, 2 experienced readers rated motion artifacts and vessel delineation, or in-stent lumen visualization using 5-point discrete visual scales. For objective image quality, signal-to-noise ratio, contrast-to-noise ratio, stent blooming artifacts, and vessel and stent sharpness were quantified. RESULTS: Fifteen patients had coronary stents, and 15 patients had no coronary stents. The mean heart rate and heart rate variability during data acquisition were 72 ± 10 beats per minute and 5 ± 6 beats per minute, respectively. Subjective image quality in the right coronary artery, left anterior descending, and circumflex artery was significantly superior in 66 milliseconds reconstructions compared with 125 milliseconds reconstructions for both readers (all P 's < 0.01; interreader agreement, Krippendorff α = 0.84-1.00). Subjective image quality deteriorated significantly at higher heart rates for 125 milliseconds (ρ = 0.21, P < 0.05) but not for 66 milliseconds reconstructions (ρ = 0.11, P = 0.22). No association was found between heart rate variability and image quality for both 125 milliseconds (ρ = 0.09, P = 0.33) and 66 milliseconds reconstructions (ρ = 0.13, P = 0.17), respectively. Signal-to-noise ratio and contrast-to-noise ratio were similar between 66 milliseconds and 125 milliseconds reconstructions (both P 's > 0.05), respectively. Stent blooming artifacts were significantly lower on 66 milliseconds than on 125 milliseconds reconstructions (46.7% ± 10% vs 52.9% ± 8.9%, P < 0.001). Higher sharpness was found in 66 milliseconds than in 125 milliseconds reconstructions both in native coronary arteries (left anterior descending artery: 1031 ± 265 ∆HU/mm vs 819 ± 253 ∆HU/mm, P < 0.01; right coronary artery: 884 ± 352 ∆HU/mm vs 654 ± 377 ∆HU/mm, P < 0.001) and stents (5318 ± 3874 ∆HU/mm vs 4267 ± 3521 ∆HU/mm, P < 0.001). CONCLUSIONS: Coronary angiography with PCD-CT in the UHR mode profits considerably from a high temporal resolution, resulting in less motion artifacts, superior vessel delineation and in-stent lumen visualization, less stent blooming artifacts, and superior vessel and stent sharpness.


Assuntos
Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Angiografia Coronária/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Stents , Imagens de Fantasmas
19.
Eur J Radiol Open ; 10: 100481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852255

RESUMO

Purpose: The combined testing for coronary artery and pulmonary diseases is of clinical interest as risk factors are shared. In this study, a novel ECG-gated tin-filtered ultra-low dose chest CT protocol (GCCT) for integrated heart and lung acquisition and the applicability of artificial intelligence (AI)-based coronary artery calcium scoring were assessed. Methods: In a clinical registry of 10481 patients undergoing heart and lung CT, GCCT was applied in 44 patients on a dual-source CT. Coronary calcium scans (CCS) with 120 kVp, 100 kVp, and tin-filtered 100 kVp (Sn100) of controls, matched with regard to age, sex, and body-mass index, were retrieved from the registry (ntotal=176, 66.5 (59.4-74.0) years, 52 men). Automatic tube current modulation was used in all scans. In 20 patients undergoing GCCT and Sn100 CCS, Agatston scores were measured both semi-automatically by experts and by AI, and classified into six groups (0, <10, <100, <400, <1000, ≥1000). Results: Effective dose decreased significantly from 120 kVp CCS (0.50 (0.41-0.61) mSv) to 100 kVp CCS (0.34 (0.26-0.37) mSv) to Sn100 CCS (0.14 (0.11-0.17) mSv). GCCT showed higher values (0.28 (0.21-0.32) mSv) than Sn100 CCS but lower than 120 kVp and 100 kVp CCS (all p < 0.05) despite greater scan length. Agatston scores correlated strongly between GCCT and Sn100 CCS in semi-automatic and AI-based measurements (both ρ = 0.98, p < 0.001) resulting in high agreement in Agatston score classification (κ = 0.97, 95% CI 0.92-1.00; κ = 0.89, 95% CI 0.79-0.99). Regarding chest findings, further diagnostic steps were recommended in 28 patients. Conclusions: GCCT allows for reliable coronary artery disease and lung cancer screening with ultra-low radiation exposure. GCCT-derived Agatston score shows excellent agreement with standard CCS, resulting in equivalent risk stratification.

20.
Eur J Radiol ; 161: 110746, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36821957

RESUMO

PURPOSE: To investigate the effect of using photon-counting detector (PCD)-CT with ultra-high resolution (UHR) on stenosis quantification accuracy and blooming artifacts from low to high heart rates in a dynamic motion phantom. METHOD: Two vessel phantoms (diameter: 4 mm) containing solid calcified lesions (25%, 50% stenoses), filled with different concentrations of iodine, inside an anthropomorphic thorax phantom attached to a coronary motion simulator were used. Scanning was performed on a PCD-CT system using an ECG-gated mode at UHR and standard resolution (SR) (0.2, 0.6 mm slice thickness, respectively). Images were reconstructed at 60, 80 and 100 beats per minute (bpm) (UHR: Bv56 kernel, quantum iterative reconstruction (QIR) level 3; SR: 55 keV, Bv40 kernel, QIR3). Percent diameter stenosis (PDS) and blooming artifacts were measured by two readers. RESULTS: PDS measurements derived from UHR were more accurate than SR for both lesions at every heart rate (p ≤ 0.005 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 57.1% [55.2-59.2] vs. 50.0% [48.5-51.2], at 100 bpm 61.0% [58.6-64.3] vs. 52.4% [51.3-54.3]). Overall mean difference across heart rates and lesions compared to the nominal stenoses was 9.2% (Limit of Agreement (LoA), 2.4%/16.0%) for SR vs. 2.4% (LoA, -2.8%/7.5%) for UHR. Blooming artifacts decreased with UHR compared to SR for both lesions at every heart rate (p < 0.001 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 63.8% [60.6-69.5] vs. 52.5% [50.0-57.5], at 100 bpm 70.2% [64.8-78.1] vs. 56.1% [51.2-60.8]). CONCLUSIONS: This motion phantom study demonstrates improved stenosis quantification accuracy and reduced blooming artifacts with UHR-PCD-CT compared to SR, independent of heart rate.


Assuntos
Angiografia por Tomografia Computadorizada , Estenose Coronária , Humanos , Constrição Patológica , Frequência Cardíaca , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem , Imagens de Fantasmas , Tórax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA