RESUMO
Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.
Assuntos
Petróleo , Animais , Petróleo/toxicidade , Invertebrados/fisiologia , Metamorfose Biológica , Ecossistema , Estágios do Ciclo de Vida , Larva/metabolismoRESUMO
The entry of microplastics (MPs) into marine food webs is a major environmental concern. We investigated how the behavior of planktonic copepods influences the risk of MPs to enter marine food webs by applying a trait-based approach and by combining experiments (bottle incubations and video observations) with biogeographical analyses. We aimed to evaluate which type of feeding behavior is most risky in terms of MP ingestion and which marine geographical areas are more susceptible to MP ingestion by planktonic copepods. We used different species as models of the main foraging behaviors in planktonic copepods: feeding-current, cruising, ambush, and mixed behavior feeding. All behaviors showed a similarly low risk of MP ingestion, up to 1 order of magnitude lower than for similar-sized microalgae. We did not observe any influence of the prey type or MP size (8 and 20 µm) on MP ingestion for any of the behaviors. By mapping the global distribution of feeding behaviors, we showed that feeding-current feeding is the most common behavior, but the risk of MP ingestion remains equally low across the global ocean, independently of the predominant behavior. Overall, our results suggest a low risk of MP ingestion by planktonic copepods and therefore a minimal risk of trophic transfer of MPs via marine pelagic copepods in marine ecosystems.
Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Microplásticos , Cadeia Alimentar , Plâncton , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Microplastics (MPs) overlap in size with phytoplankton and can be ingested by zooplankton, transferring them to higher trophic levels. Copepods are the most abundant metazoans among zooplankton and the main link between primary producers and higher trophic levels. Ingestion of MPs has been investigated in the laboratory, but we still know little about the ingestion of MPs by zooplankton in the natural environment. In this study, we determined the concentration and characteristics of MPs down to 10 µm in zooplankton samples, sorted calanoid copepods, and fecal pellets collected in the Kattegat/Skagerrak Sea (Denmark). We found a median concentration of 1.7 × 10-3 MPs ind-1 in the zooplankton samples, 2.9 × 10-3 MPs ind-1 in the sorted-copepods, and 3 × 10-3 MPs per fecal pellet. Most MPs in the zooplankton samples and fecal pellets were fragments smaller than 100 µm, whereas fibers dominated in the sorted copepods. Based on the collected data, we estimated a MP budget for the surface layer (0-18 m), where copepods contained only 3% of the MPs in the water, while 5% of the MPs were packed in fecal pellets. However, the number of MPs exported daily to the pycnocline via fecal pellets was estimated to be 1.4% of the total MPs in the surface layer. Our results indicate that zooplankton are an entry point of small MPs in the food web, but the number of MPs in zooplankton and their fecal pellets was low compared with the number of MPs found in the water column and the occurrence and/or ingestion of MPs reported for nekton. This suggests a low risk of MP transferring to higher trophic levels through zooplankton and a quantitatively low, but ecologically relevant, contribution of fecal pellets to the vertical exportation of MPs in the ocean.
Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Zooplâncton , Animais , Copépodes , Microplásticos/análise , Poluentes Químicos da Água/análise , Dinamarca , Fezes/químicaRESUMO
Planktonic copepods are the most abundant animals in the ocean and key players in global biochemical processes. Recent modeling suggests that zooplankton ingestion of microplastics (MPs) can disrupt the biological carbon pump and accelerate a global loss of oceanic oxygen. Here we investigate the behavioral responses and ingestion rates of a model feeding-current generating copepod when exposed to microplastics of different characteristics by small-scale video observations and bottle incubations. We found that copepods rejected 80% of the microplastics after touching them with their mouth parts, in essence exhibiting a kind of taste discrimination. High rejection rates of microplastics were independent of polymer type, shape, presence of biofilms, or sorbed pollutant (pyrene), indicating that microplastics are unpalatable for feeding-current feeding copepods and that post-capture taste discrimination is a main sensorial mechanism in the rejection of microplastics. In an ecological context, taking into account the behaviors of planktonic copepods and the concentrations of microplastics found in marine waters, our results suggest a low risk of microplastic ingestion by zooplankton and a low impact of microplastics on the vertical exportation of fecal pellets.
Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plâncton , Plásticos , Paladar , Poluentes Químicos da Água/análise , ZooplânctonRESUMO
Diatoms contribute nearly half of the marine primary production. These microalgae differ from other phytoplankton groups in having a silicified cell wall, which is the strongest known biological material relative to its density. While it has been suggested that a siliceous wall may have evolved as a mechanical protection against grazing, empirical evidence of its defensive role is limited. Here, we experimentally demonstrate that grazing by adult copepods and nauplii on diatoms is approximately inversely proportional to their silica content, both within and among diatom species. While a sixfold increase in silica content leads to a fourfold decrease in copepod grazing, silicification provides no protection against protozoan grazers that directly engulf their prey. We also found that the wall provides limited protection to cells ingested by copepods, since less than 1% of consumed cells were alive in the faecal pellets. Moreover, silica deposition in diatoms decreases with increasing growth rates, suggesting a possible cost of defence. Overall, our results demonstrate that thickening of silica walls is an effective defence strategy against copepods. This suggests that the plasticity of silicification in diatoms may have evolved as a response to copepod grazing pressure, whose specialized tools to break silicified walls have coevolved with diatoms.
Assuntos
Copépodes/fisiologia , Diatomáceas/química , Cadeia Alimentar , Herbivoria , Dióxido de Silício/química , Animais , Parede Celular/química , Fitoplâncton/químicaRESUMO
Our traditional view of the interactions between marine organisms is conceptualized as food webs where species interact with one another mainly via direct consumption. However, recent research suggests that understudied non-consumptive interactions, such as behaviourally mediated indirect interactions (BMIIs), can influence marine ecosystems as much as consumptive effects. Here, we show, to our knowledge, the first experimental evidence and quantification of bottom-up BMIIs in plankton food webs. We used observational, modelling and experimental approaches to investigate how behavioural responses to resource availability influence predation mortality on grazers with different foraging strategies (ambushing versus active foraging). A three-level food chain was used: phytoplankton as resource, copepod nauplii as grazers of phytoplankton and a large copepod as a predator. Ambushers showed little change in foraging activity with resource availability, whereas active foragers decreased their foraging activity with increasing resources, which led to a decrease (24-50%) in predation mortality. Therefore, an increase in resources ('initiator') causes behavioural changes in active grazers ('transmitter'), which ultimately negatively affects predator ('receiver') consumption rates. Consequently, increase in resource abundance may result in decreasing energy transfer to higher trophic levels. These results indicate that behaviourally mediated interactions drive marine food web dynamics differently from that predicted by only density-mediated or consumptive interactions.
Assuntos
Copépodes/fisiologia , Cadeia Alimentar , Herbivoria , Plâncton/fisiologia , Comportamento Predatório , Rodopseudomonas/fisiologia , Animais , Ecossistema , Modelos BiológicosRESUMO
After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers of phytoplankton, were negatively affected by the exposure to oil and dispersant, whereas bloom-forming dinoflagellates ( Prorocentrum texanum, P. triestinum, and Scrippsiella trochoidea) notably increased their concentration. The removal of key grazers due to oil and dispersant disrupts the predator-prey controls ("top-down controls") that normally function in plankton food webs. This disruption of grazing pressure opens a "loophole" that allows certain dinoflagellates with higher tolerance to oil and dispersants than their grazers to grow and form blooms when there are no growth limiting factors (e.g., nutrients). Therefore, oil spills and dispersants can act as disrupters of predator-prey controls in plankton food webs and as indirect inducers of potentially harmful dinoflagellate blooms.
Assuntos
Dinoflagellida , Poluição por Petróleo , Golfo do México , Proliferação Nociva de Algas , PlânctonRESUMO
In 2010, nearly 7 million liters of chemical dispersants, mainly Corexit 9500A, were released in the Gulf of Mexico to treat the Deepwater Horizon oil spill. However, little is still known about the effects of Corexit 9500A and dispersed crude oil on microzooplankton despite the important roles of these planktonic organisms in marine ecosystems. We conducted laboratory experiments to determine the acute toxicity of Corexit 9500A, and physically and chemically dispersed Louisiana light sweet crude oil to marine microzooplankton (oligotrich ciliates, tintinnids and heterotrophic dinoflagellates). Our results indicate that Corexit 9500A is highly toxic to microzooplankton, particularly to small ciliates, and that the combination of dispersant with crude oil significantly increases the toxicity of crude oil to microzooplankton. The negative impact of crude oil and dispersant on microzooplankton may disrupt the transfer of energy from lower to higher trophic levels and change the structure and dynamics of marine planktonic communities.
Assuntos
Cilióforos/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Lipídeos/toxicidade , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Sinergismo Farmacológico , MéxicoRESUMO
Planktonic copepods play a key function in marine ecosystems, however, little is known about the effects of dispersants and chemically dispersed crude oil on these important planktonic organisms. We examined the potential for the copepods Acartia tonsa, Temora turbinata and Parvocalanus crassirostris to ingest crude oil droplets and determined the acute toxicity of the dispersant Corexit(®) 9500A, and physically and chemically dispersed crude oil to these copepods. We detected ingestion of crude oil droplets by adults and nauplii of the three copepod species. Exposure to crude oil alone (1 µL L(-1), 48 h) caused a reduction of egg production rates (EPRs) by 26-39 %, fecal pellet production rates (PPRs) by 11-27 %, and egg hatching (EH) by 1-38 % compared to the controls, depending on the species. Dispersant alone (0.05 µL L(-1), 48 h) produced a reduction in EPR, PPR and EH by 20-35, 12-23 and 2-11 %, respectively. Dispersant-treated crude oil was the most toxic treatment, ~1.6 times more toxic than crude oil alone, causing a reduction in EPR, PPR and EH by 45-54, 28-41 and 11-31 %, respectively. Our results indicate that low concentrations of dispersant Corexit 9500A and chemically dispersed crude oil are toxic to marine zooplankton, and that the ingestion of crude oil droplets by copepods may be an important route by which crude oil pollution can enter marine food webs.
Assuntos
Copépodes/efeitos dos fármacos , Exposição Ambiental , Poluentes Ambientais/toxicidade , Petróleo/toxicidade , Animais , Cadeia Alimentar , Testes de Toxicidade AgudaRESUMO
Microplastics (MPs) are found in aquatic environments all over the world. Among MPs, tire wear particles (TWPs) are a major contributor to microplastic pollution, and their effects on marine ecosystems are of emerging concern. The blue mussel (Mytilus edulis) is a keystone species in coastal ecosystems with a high risk of exposure to microplastic pollution as the microplastics often overlap in size with the plankton consumed by mussels. In the present study, we investigated the effect of tire particles and their leachates on the filtration rates of M. edulis after short (72 h) and long-term (3 weeks) exposure. Acute exposure to leachates alone causes a significant decrease in the filtration rates of M. edulis with a low observed effect concentration (LOEC) of 1.25 g L-1 and a median effect concentration (EC50) = 3 g L-1. At a concentration of 1.25 g L-1, the filtration rate was reduced compared to the control on average by 38% when mussels were exposed to either TWP or leachates for 72 h. Similarly, mussels exposed to tire particles or their leachates for 3 weeks showed a 46% reduction in filtration rates, compared to the control group. A non-significant difference in filtration rate decrease was found between leachates alone or TWP, which indicates that leachates are the main responsible for the observed toxicity. Our findings indicate that elevated levels of TWP pollution can cause an adverse impact on M. edulis. This could disrupt the natural grazing pressure exerted by M. edulis on phytoplankton, potentially leading to an increased likelihood of algal blooms and hypoxia occurrence in coastal ecosystems.
Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Plásticos , Microplásticos , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 µm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 µm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Resíduos/análise , Espanha , Monitoramento Ambiental , Praias , Polietileno , Poluentes Químicos da Água/análiseRESUMO
Microplastics (MPs) have emerged as an important research topic due to their ubiquity in the environment and their potentially harmful effects on aquatic biota. However, our knowledge of the abundance and characteristics of the smaller fraction of MPs (<300 µm) in marine waters remains limited. This study aims to compare two different filter pump devices: AAU-UFO (Universal Filtering Object) pump and KCD (KC Denmark's Micro Plastic Particle) pump for sampling small MPs (>10 µm). Coastal waters from six sites in the Gulf of Bothnia (Baltic Sea) were sampled with both devices. The concentration and composition of the collected MPs were analyzed by FPA-µFTIR imaging. The median concentrations were 117 MP/m3 with a median mass of 118 µg/m3 and 162 MP/m3 with a median mass of 117 µg/m3, for the UFO pump and KCD pump, respectively. The predominant MP shape was fragment, and the most abundant polymers were polyester, polyethylene, and polypropylene. MPs smaller than 300 µm represented more than 90% of the MPs in the samples. The recorded microplastic concentrations were several orders of magnitude higher than those previously reported using a Manta net in this area, highlighting the importance of analyzing MPs smaller than 300 µm. No significant differences in MP concentrations were found between samples from the two filter pumps, indicating that both devices are comparably effective systems for sampling MPs (>10 µm) in coastal waters. Overall, our findings contribute to harmonizing sampling methodologies for small MPs in aquatic systems, which is crucial for establishing effective monitoring programs and ensuring accurate risk assessments.
RESUMO
Tire wear particles (TWP) are a major source of microplastics in the aquatic environment and the ecological impacts of their leachates are of major environmental concern. Among marine biota, copepods are the most abundant animals in the ocean and a main link between primary producers and higher trophic levels in the marine food webs. In this study, we determined the acute lethal and sublethal effects of tire particle leachates on different life stages of the cosmopolitan planktonic copepod Acartia tonsa. Median lethal concentration (LC50, 48 h) ranged from 0.4 to 0.6 g L-1 depending on the life stages, being nauplii and copepodites more sensitive to tire particle leachates than adults. The median effective concentration (EC50, 48 h) for hatching was higher than 1 g L-1, indicating a relatively low sensitivity of hatching to tire particle leachates. However, metamorphosis (from nauplius VI to copepodite I) was notably reduced by tire particle leachates with an EC50 (48 h) of 0.23 g L-1 and the absence of metamorphosis at 1 g L-1, suggesting a strong developmental delay or endocrine disruption. Leachates also caused a significant decrease (10-22%) in the body length of nauplii and copepodites after exposure to TWP leachates (0.25 and 0.5 g L-1). We tested a battery of enzymatic biomarkers in A. tonsa adult stages, but a sublethal concentration of 50 mg L-1 of tire particle leachates did not cause a statistically significant effect on the measured enzymatic activities. Our results show that tire particle leachates can negatively impact the development, metamorphosis, and survival of planktonic copepods. More field data on concentrations of TWPs and the fate and persistence of their leached additives is needed for a better assessment of the risk of tire particle pollution on marine food webs.
Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Plâncton , Plásticos/toxicidade , Dose Letal MedianaRESUMO
Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.
Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cadeia Alimentar , Água/farmacologia , Regiões Árticas , Petróleo/toxicidade , Petróleo/metabolismoRESUMO
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 µg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 µm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
RESUMO
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Modelos BiológicosRESUMO
The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.
Assuntos
Copépodes , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Copépodes/efeitos dos fármacos , Copépodes/fisiologia , Animais , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluição por Petróleo , Monitoramento Ambiental , EcossistemaRESUMO
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Assuntos
Organismos Aquáticos , Invertebrados , Plásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Mar Mediterrâneo , Organismos Aquáticos/efeitos dos fármacos , Invertebrados/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Monitoramento Ambiental , Oceano Atlântico , Ecotoxicologia , Vertebrados , Oryzias , Paracentrotus/efeitos dos fármacosRESUMO
Major oil spills can impose a significant environmental hazard on the marine ecosystem, and a promising mitigation measure is in-situ oil burning (ISB). However, our knowledge of the impact of the burned residues and soot deposition on the marine ecosystem is still limited. We investigated the effects of burned oil residue and soot deposition on the marine plankton communities of the oligotrophic Eastern Mediterranean Sea with a mesocosm experiment. Three triplicated treatments were tested: (1) Iranian crude oil was added and burned (Burned treatment); (2) soot was collected and deposited with artificial rain (Soot); and (3) a non-contaminated Control. Results revealed that Low Nucleic Acid heterotrophic bacteria, Synechococcus spp., and pigmented pico-nano Eukaryotes (pnEuk) were negatively affected in the Burned and Soot treatments. Viruses, heterotrophic pnEuk and ciliates (in Soot) were crucial for controlling the High Nucleic Acid bacteria. Ciliates and most dinoflagellates showed a negative response to the burned residues but were less affected or were even favored when exposed to soot. Our results show that ISB affected the structure and dynamics of the plankton food web through burned residues and soot depositions. However, since the effects appeared at least three days after the ignition, ISB could be combined with subsequent burned residue collection to minimize its impact on the pelagic ecosystem.
RESUMO
With thousands of tons of Tyre Wear Particles (TWP) entering the aquatic environment every year, TWP are considered a major contributor to microplastic pollution. TWP leach organic compounds and metals in water, potentially affecting the marine food web. However, little is known about the toxicity of TWP leachates on marine copepods, a major food web constituent, and a key group to determine the environmental risk of pollution in marine ecosystems. In this study, we determined the lethal effect of TWP leachates on marine copepods after 24, 48, and 72-h of exposure to 0.05-100% leachate solutions prepared using a concentration of 5 g TWP L-1. The calanoids Acartia tonsa, Temora longicornis and Centropages hamatus, the cyclopoid Oithona davisae and the harpacticoid Amonardia normanni were used as experimental species. TWP leachates were toxic to all the studied species, with toxicity increasing as leachate solution and exposure time increased. Median lethal concentration (LC50, 72-h) ranged from 0.22 to 3.43 g L-1 and calanoid copepods were more sensitive to TWP leachates than the cyclopoid O. davisae and the harpacticoid A. normanni. Toxicity of TWP leachates was not related to the copepod body size, which suggests that other traits such as foraging behaviour or adaptation to contaminants could explain the higher tolerance of cyclopoid and harpacticoid to TWP leachates compared to calanoid copepods. Although field data on the concentration of TWP and their chemical additives are still limited, our results suggest that TWP leachates can negatively impact planktonic food webs in coastal areas after road runoff events.