Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
PLoS Pathog ; 16(12): e1009068, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382858

RESUMO

Originating from African forests, Zika virus (ZIKV) has now emerged worldwide in urbanized areas, mainly transmitted by Aedes aegypti mosquitoes. Although Aedes albopictus can transmit ZIKV experimentally and was suspected to be a ZIKV vector in Central Africa, the potential of this species to sustain virus transmission was yet to be uncovered until the end of 2019, when several autochthonous transmissions of the virus vectored by Ae. albopictus occurred in France. Aside from these few locally acquired ZIKV infections, most territories colonized by Ae. albopictus have been spared so far. The risk level of ZIKV emergence in these areas remains however an open question. To assess Ae. albopictus' vector potential for ZIKV and identify key virus outbreak predictors, we built a complete framework using the complementary combination of (i) dose-dependent experimental Ae. albopictus exposure to ZIKV followed by time-dependent assessment of infection and systemic infection rates, (ii) modeling of intra-human ZIKV viremia dynamics, and (iii) in silico epidemiological simulations using an Agent-Based Model. The highest risk of transmission occurred during the pre-symptomatic stage of the disease, at the peak of viremia. At this dose, mosquito infection probability was estimated to be 20%, and 21 days were required to reach the median systemic infection rates. Mosquito population origin, either temperate or tropical, had no impact on infection rates or intra-host virus dynamic. Despite these unfavorable characteristics for transmission, Ae. albopictus was still able to trigger and yield large outbreaks in a simulated environment in the presence of sufficiently high mosquito biting rates. Our results reveal a low but existing epidemic potential of Ae. albopictus for ZIKV, that might explain the absence of large scale ZIKV epidemics so far in territories occupied only by Ae. albopictus. They nevertheless support active surveillance and eradication programs in these territories to maintain the risk of emergence to a low level.


Assuntos
Mosquitos Vetores/metabolismo , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Aedes/metabolismo , Aedes/virologia , Animais , Surtos de Doenças , Vetores de Doenças , Epidemias , Humanos , Modelos Teóricos , Saliva/virologia , Carga Viral , Viremia/transmissão , Zika virus/patogenicidade , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
2.
J Infect Dis ; 224(3): 544-553, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306099

RESUMO

Malaria begins when Plasmodium-infected Anopheles mosquitoes take a blood meal on a vertebrate. During the initial probing process, mosquitoes inject saliva and sporozoites into the host skin. Components of mosquito saliva have the potential to influence sporozoite functionality. Sporozoite-associated mosquito saliva protein 1 (SAMSP1; AGAP013726) was among several proteins identified when sporozoites were isolated from saliva, suggesting it may have an effect on Plasmodium. Recombinant SAMSP1 enhanced sporozoite gliding and cell traversal activity in vitro. Moreover, SAMSP1 decreased neutrophil chemotaxis in vivo and in vitro, thereby also exerting an influence on the host environment in which the sporozoites reside. Active or passive immunization of mice with SAMSP1 or SAMSP1 antiserum diminished the initial Plasmodium burden after infection. Passive immunization of mice with SAMSP1 antiserum also added to the protective effect of a circumsporozoite protein monoclonal antibody. SAMSP1 is, therefore, a mosquito saliva protein that can influence sporozoite infectivity in the vertebrate host.


Assuntos
Anopheles , Plasmodium , Animais , Proteínas de Insetos , Malária , Camundongos , Proteínas de Protozoários , Proteínas e Peptídeos Salivares , Esporozoítos
3.
Parasitology ; 147(3): 329-339, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840617

RESUMO

BACKGROUND: The accurate and rapid identification of mosquito blood meals is critical to study the interactions between vectors and vertebrate hosts and, subsequently, to develop vector control strategies. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has been shown to be a reliable and effective tool for identifying single blood meals from mosquitoes. METHODS: In this study, we developed MALDI-TOF MS profiling protocols to identify Anopheles gambiae Giles, Anopheles coluzzii and Aedes albopictus mosquitoes' mixed blood meals and the last of successive blood meals. The mosquitoes were either successively artificially fed with distinct host bloods or engorged with mixed bloods from distinct vertebrate hosts, such as humans, sheep and dogs. RESULTS: Blind test analyses revealed a correct identification of mixed blood meals from mosquitoes using MALDI-TOF MS profiling. The 353 MS spectra from mixed blood meals were identified using log score values >1.8. All MS spectra (n = 244) obtained from mosquitoes' successive blood meals were reproducible and specific to the last blood meal, suggesting that the previous blood meals do not have an impact on the identification of the last one. CONCLUSION: MALDI-TOF MS profiling approach appears to be an effective and robust technique to identify the last and mixed blood meals during medical entomological surveys.


Assuntos
Aedes/fisiologia , Anopheles/fisiologia , Entomologia/métodos , Mosquitos Vetores/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aedes/química , Animais , Anopheles/química , Análise Química do Sangue , Dieta , Cães , Comportamento Alimentar , Humanos , Mosquitos Vetores/química , Ovinos , Especificidade da Espécie
4.
Parasitology ; 145(5): 677-687, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28768561

RESUMO

In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient tool for arthropod identification. Its application for field monitoring of adult mosquitoes was demonstrated, but identification of larvae has been limited to laboratory-reared specimens. Study aim was to test the success of MALDI-TOF MS in correctly identifying mosquito larvae collected in the field. Collections were performed at 13 breeding sites in urban areas of Marseille, a city in the South of France. A total of 559 larvae were collected. Of these, 73 were accurately morphologically identified, with confirmation either by molecular identification (n = 31) or analysis with MALDI-TOF MS (n = 31) and 11 were tested using both methods. The larvae identified belonged to six species including Culiseta longiareolata, Culex pipiens pipiens, Culex hortensis, Aedes albopictus, Ochlerotatus caspius and Anopheles maculipennis. A high intra-species reproducibility and inter-species specificity of whole larva MS spectra was obtained and was independent of breeding site. More than 92% of the remaining 486 larvae were identified in blind tests against the MS spectra database. Identification rates were lower for early and pupal stages, which is attributed to lower protein abundance and metamorphosis, respectively. The suitability of MALDI-TOF MS for mosquito larvae identification from the field has been confirmed.


Assuntos
Culicidae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Cidades , Culicidae/química , DNA/isolamento & purificação , França , Larva/química , Larva/classificação , Pupa/química
5.
Malar J ; 16(1): 5, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049524

RESUMO

BACKGROUND: Malaria is still a major public health issue worldwide, and one of the best approaches to fight the disease remains vector control. The current methods for mosquito identification include morphological methods that are generally time-consuming and require expertise, and molecular methods that require laboratory facilities with relatively expensive running costs. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology, routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of the present study was to assess whether MALDI-TOF MS could successfully distinguish Anopheles stephensi mosquitoes according to their Plasmodium infection status. METHODS: C57BL/6 mice experimentally infected with Plasmodium berghei were exposed to An. stephensi bites. For the determination of An. stephensi infection status, mosquito cephalothoraxes were dissected and submitted to mass spectrometry analyses and DNA amplification for molecular analysis. Spectra were grouped according to mosquitoes' infection status and spectra quality was validated based on intensity and reproducibility within each group. The in-lab MALDI-TOF MS arthropod reference spectra database, upgraded with representative spectra from both groups (infected/non-infected), was subsequently queried blindly with cephalothorax spectra from specimens of both groups. RESULTS: The MALDI TOF MS profiles generated from protein extracts prepared from the cephalothorax of An. stephensi allowed distinction between infected and uninfected mosquitoes. Correct classification was obtained in blind test analysis for (79/80) 98.75% of all mosquitoes tested. Only one of 80 specimens, an infected mosquito, was misclassified in the blind test analysis. CONCLUSIONS: Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry appears to be a promising, rapid and reliable tool for the epidemiological surveillance of Anopheles vectors, including their identification and their infection status.


Assuntos
Anopheles/parasitologia , Produtos Biológicos/análise , Entomologia/métodos , Plasmodium berghei/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Anopheles/crescimento & desenvolvimento , Feminino , Camundongos Endogâmicos C57BL
6.
Proteomics ; 16(24): 3148-3160, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27862981

RESUMO

The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.


Assuntos
Culicidae/química , Proteínas de Insetos/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Análise por Conglomerados , Culicidae/classificação , Larva/química , Proteômica/economia , Proteômica/normas , Especificidade da Espécie , Manejo de Espécimes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
7.
Malar J ; 15: 87, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26872451

RESUMO

BACKGROUND: The identification of blood meal sources in malaria vectors is critical to better understanding host/vector interactions and malaria epidemiology and control. Currently, the identification of mosquito blood meal origins is based on time-consuming and costly techniques such as precipitin tests, ELISA and molecular tools. Although these tools have been validated to identify the blood meal and trophic preferences of female Anopheles mosquitoes, they present several limitations. Recently, matrix-assisted, laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successfully used as a quick and accurate tool for arthropod identification, including mosquitoes. The aim of the present work was to test whether MALDI-TOF MS could also be applied to identification of blood meal sources from engorged mosquitoes. METHODS: Abdomen proteins extracted from Anopheles gambiae (stricto sensu, S molecular form) that were either unengorged or artificially engorged on seven distinct types of vertebrate blood (human, horse, sheep, rabbit, mouse, rat, dog) were submitted for MALDI-TOF MS. RESULTS: The comparison of mass spectrometry (MS) spectra from mosquito abdomens collected 1 h post-feeding, were able to discriminate blood meal origins. Moreover, using Aedes albopictus specimens, abdominal protein MS spectra from engorged mosquitoes were found specific to host blood source and independent of the mosquito species. A sequential analysis revealed stability of mosquito abdominal protein spectra up to 24 h post-feeding. CONCLUSIONS: These results indicate that MALDI-TOF MS could determine feeding patterns of freshly engorged mosquitoes up to 24 h post-blood meal. The MALDI-TOF MS technique appears to be an efficient tool for large epidemiological surveillance of vector-borne diseases and outbreak source identification.


Assuntos
Anopheles , Análise Química do Sangue , Comportamento Alimentar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Análise por Conglomerados , Cães , Feminino , Cavalos , Humanos , Insetos Vetores , Camundongos , Ratos , Ovinos
8.
Parasitol Res ; 115(11): 4199-4210, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27469536

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology has recently been reported as a promising method for arthropods identification. More recently, our laboratory reported the correct identification of tick species via the MALDI-TOF MS protein spectra profiling of legs from fresh specimens. The aim of the present study was to assess the use of MALDI-TOF MS for correct identification of ixodid tick species preserved in 70 % ethanol during field collection in Ethiopia. Following morphological identification of 12 tick species, the legs from 85 tick specimens were subjected to MALDI-TOF MS. Spectral analysis revealed an intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. To support the results of the MALDI-TOF MS tick species identification, 41 tick specimens comprising 3 to 5 specimens per tick species were used to create a reference spectra database, which was evaluated using the spectra of the 44 remaining tick specimens. The blind tests revealed that 100 % of the tick specimens studied by MALDI-TOF MS were correctly identified. A relevant Log score value (LSV) of >1.8 was recorded for all of the tick species studied by MALDI-TOF MS, except for Rhipicephalus praetextatus. The morphological and MALDI-TOF MS identifications were confirmed by sequencing the 12S ribosomal RNA (rRNA) gene of 40 tick specimens belonging to 11 ixodid species. Taken together, the results of the present study indicate that MALDI-TOF MS is a reliable tool for tick species identification, even after preservation in ethanol, provided that a reference spectra database is built from specimens that represent the respective species stored under the same conditions.


Assuntos
Ixodidae/química , Ixodidae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Etiópia , Ixodidae/classificação , Ixodidae/crescimento & desenvolvimento , Especificidade da Espécie
9.
J Clin Microbiol ; 53(2): 410-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25411169

RESUMO

Biting midges of the genus Culicoides are implicated as vectors for a wide variety of pathogens. The morphological identification of these arthropods may be difficult because of a lack of detailed investigation of taxonomy for this species in Africa. However, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) profiling is efficient for arthropod identification at the species level. This study established a spectrum database of Culicoides spp. from Senegal using MALDI-TOF. Identification of Culicoides insects to the species level before mass spectrometry was performed on the basis of morphological characters. MALDI-TOF MS reference spectra were determined for 437 field-caught Culicoides of 10 species. The protein profiles of all tested Culicoides revealed several peaks with mass ranges of 2 to 20 kDa. In a validation study, 72 Culicoides specimens in the target species were correctly identified at the species level with a similarity of 95 to 99.9%. Four Culicoides protein profiles were misidentified. Nevertheless, six SuperSpectra (C. imicola, C. enderleini, C. oxystoma, C. kingi, C. magnus, and C. fulvithorax) were created. Abdomens of midges were used to amplify and sequence a portion of the mitochondrial cytochrome oxidase I gene (COI). The results obtained using the MALDI-TOF MS method were consistent with the morphological identification and similar to the genetic identification. Protein profiling using MALDI-TOF is an efficient approach for the identification of Culicoides spp., and it is economically advantageous for approaches that require detailed and quantitative information of vector species that are collected in field. The database of African Culicoides MS spectra created is the first database in Africa. The COI sequences of five Culicoides species that were previously noncharacterized using molecular methods were deposited in GenBank.


Assuntos
Ceratopogonidae/classificação , Entomologia/métodos , Técnicas de Diagnóstico Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Ceratopogonidae/química , Ceratopogonidae/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Masculino , Mitocôndrias/enzimologia , Senegal
10.
J Med Entomol ; 52(3): 513-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26334829

RESUMO

Arthropods can be captured by two modes: a passive mode using traps or an active mode mainly based on the use of mouth or powered aspirators. These apparatuses are useful tools for collecting large numbers of crawling, flying, resting, or jumping arthropod specimens, particularly small specimens, such as mosquitoes or sandflies, for laboratory experiments or breeding. Different aspirator models are used to collect various arthropod specimens. However, to our knowledge, no specific system is currently available for the reliable sampling of live bed bugs in the field. Thus, we described a new system based on a classic autonomous house aspirator that requires few modifications for the collecting bed bugs. The low weight and size of this apparatus is advantageous, and it provides for rapid and secure bed bug sampling for medical entomology purposes.


Assuntos
Percevejos-de-Cama , Controle de Insetos/instrumentação , Vácuo , Animais
11.
Parasitol Res ; 113(6): 2375-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24737398

RESUMO

MALDI-TOF MS profiling has proved to be efficient for arthropod identification at the species level. However, prior to entomological monitoring, the reference spectra database should cover relevant species. Here, 74 specimens were field-collected from 11 mosquito species captured in two distinct European areas and used either to increment our database or for blind tests. Misidentification was not noted, underlining the power of this approach. Nevertheless, three out of the 26 specimens used for the blind test did not reach the significant identification threshold value set, attributed to lower spectral quality. In the future, the quality control spectra parameters need to be defined to avoid not achieving significant threshold identification.


Assuntos
Culicidae/química , Culicidae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Europa (Continente) , Especificidade da Espécie
12.
PLoS One ; 19(5): e0303027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728353

RESUMO

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Assuntos
Aedes , Resistência a Inseticidas , Inseticidas , Nitrilas , Piretrinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Piretrinas/farmacologia , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/metabolismo , Resistência a Inseticidas/genética , Nitrilas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Dengue/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino
13.
Insects ; 14(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887837

RESUMO

MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.

14.
Pathogens ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37764886

RESUMO

The soft ticks, Ornithodoros sonrai, are known as vectors of the tick-borne relapsing fever caused by Borrelia spp. and have also been reported to carry other micro-organisms. The objective of this study was to collect and to identify O. sonrai ticks and to investigate the micro-organisms associated with them. In 2019, an investigation of burrows within human dwellings was conducted in 17 villages in the Niakhar area and in 15 villages in the Sine-Saloum area in the Fatick region of Senegal. Ticks collected from the burrows were identified morphologically and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Micro-organism screening was performed by bacteria-specific qPCR and some identifications were made by standard PCR and gene sequencing. O. sonrai ticks were found in 100% (17/17) of the villages surveyed in the Niakhar area and in 66% (10/15) of the villages in the Sine-Saloum area. A total of 1275 soft tick specimens were collected from small mammal burrows. The ticks collected were morphologically identified as O. sonrai. About 20% (259/1275) of the specimens were also submitted to MALDI-TOF MS for identification. Among the resulting MS profiles, 87% (139/159) and 95% (95/100) were considered good quality specimens, preserved in alcohol and silica gel, respectively. All spectra of good quality were tested against our MALDI-TOF MS arthropod spectra database and identified as O. sonrai species, corroborating the morphological classification. The carriage of four micro-organisms was detected in the ticks with a high prevalence of Bartonella spp., Anaplasmataceae, and Borrelia spp. of 35, 28, and 26%, respectively, and low carriage of Coxiella burnetii (2%). This study highlights the level of tick infestation in domestic burrows, the inventory of pathogens associated with the O. sonrai tick, and the concern about the potential risk of tick involvement in the transmission of these pathogens in Senegal.

15.
Trop Med Infect Dis ; 8(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36977169

RESUMO

The mosquito (Diptera: Culicidae) fauna of French Guiana encompasses 242 species, of which nearly half of them belong to the genus Culex. Whereas several species of Culex are important vectors of arboviruses, only a limited number of studies focus on them due to the difficulties to morphologically identify field-caught females. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of mosquitoes. Culex females collected in French Guiana were morphologically identified and dissected. Abdomens were used for molecular identification using the COI (cytochrome oxidase 1) gene. Legs and thorax of 169 specimens belonging to 13 Culex species, (i.e., Cx. declarator, Cx. nigripalpus, Cx. quinquefasciatus, Cx. usquatus, Cx. adamesi, Cx. dunni, Cx. eastor, Cx. idottus, Cx. pedroi, Cx. phlogistus, Cx. portesi, Cx. rabanicolus and Cx. spissipes) were then submitted to MALDI-TOF MS analysis. A high intra-species reproducibility and inter-species specificity of MS spectra for each mosquito body part tested were obtained. A corroboration of the specimen identification was revealed between MALDI-TOF MS, morphological and molecular results. MALDI-TOF MS protein profiling proves to be a suitable tool for identification of neotropical Culex species and will permit the enhancement of knowledge on this highly diverse genus.

16.
BMC Genomics ; 13: 614, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23148599

RESUMO

BACKGROUND: Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. RESULTS: In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. CONCLUSION: This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological activities. The involvement of these proteins as antigenic candidates for genus-, subgenus- or species-specific immunological evaluation of individual exposure to Anopheles bites is discussed.


Assuntos
Anopheles/genética , Insetos Vetores/genética , Filogenia , Proteoma/genética , Glândulas Salivares/metabolismo , Animais , Anopheles/metabolismo , Sequência de Bases , Análise por Conglomerados , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Insetos Vetores/metabolismo , Espectrometria de Massas , Proteômica , Alinhamento de Sequência , Especificidade da Espécie
17.
Malar J ; 11: 439, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23276246

RESUMO

BACKGROUND: Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis). Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. METHODS: For this purpose, salivary gland proteins 6 (SG6) and 5'nucleotidases (5'nuc) from An. gambiae (gSG6 and g-5'nuc) and An. funestus (fSG6 and f-5'nuc) were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46) that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45). RESULTS: The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5'nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5'nucleotidase protein. CONCLUSION: This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.


Assuntos
Anopheles/imunologia , Antígenos/imunologia , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/parasitologia , Proteínas de Insetos/imunologia , Malária/imunologia , Malária/transmissão , Proteínas e Peptídeos Salivares/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Adulto , Sequência de Aminoácidos , Animais , Anopheles/genética , Anopheles/parasitologia , Antígenos/genética , Biomarcadores , Estudos de Casos e Controles , Reações Cruzadas , Feminino , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunoglobulina G/sangue , Proteínas de Insetos/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas e Peptídeos Salivares/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
18.
Parasitol Res ; 110(2): 545-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21744020

RESUMO

Over the past decade, advances in proteomic and mass spectrometry techniques and the sequencing of the Plasmodium falciparum genome have led to an increasing number of studies regarding the parasite proteome. However, these studies have focused principally on parasite protein expression, neglecting parasite-induced variations in the host proteome. Here, we investigated P. falciparum-induced modifications of the infected red blood cell (iRBC) membrane proteome, taking into account both host and parasite proteome alterations. Furthermore, we also determined if some protein changes were associated with genotypically distinct P. falciparum strains. Comparison of host membrane proteomes between iRBCs and uninfected red blood cells using fluorescence-based proteomic approaches, such as 2D difference gel electrophoresis revealed that more than 100 protein spots were highly up-represented (fold change increase greater than five) following P. falciparum infection for both strains (i.e. RP8 and Institut Pasteur Pregnancy Associated Malaria). The majority of spots identified by mass spectrometry corresponded to Homo sapiens proteins. However, infection-induced changes in host proteins did not appear to affect molecules located at the outer surface of the plasma membrane. The under-representation of parasite proteins could not be attributed to deficient parasite protein expression. Thus, this study describes for the first time that considerable host protein modifications were detected following P. falciparum infection at the erythrocyte membrane level. Further analysis of infection-induced host protein modifications will improve our knowledge of malaria pathogenesis.


Assuntos
Membrana Eritrocítica/química , Eritrócitos/química , Eritrócitos/parasitologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/análise , Plasmodium falciparum/patogenicidade , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Proteoma/análise
19.
Insects ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292910

RESUMO

Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.

20.
J Proteomics ; 264: 104623, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35623553

RESUMO

Objective of this study is to find the optimal conditions for preparing the samples, resulting in quality, reproducible and specific MS spectra of the ticks, with a shelf life in 70% ethanol of more than ten years. Amblyomma (Am.) variegatum species which had been stored in alcohol for more than twenty years and for which numerous specimens were available were used to compare the performance of four protocols tested. Spectra of insufficient quality were obtained from Am. variegatum legs preserved in alcohol for long periods with the reference protocol, named DO that we had set up years ago. The same observation was made on the spectra from Am. variegatum legs from dry (evaporated alcohol, DO-mod protocol). With new protocols named ReDO and PReDO the spectra were of good quality with high intensities (> 3000 a.u.). Blind testing showed that 94%, and 93% of the spectra were correctly identified with relevant log score values (LSVs ≥1.8), respectively for ReDO and PReDO protocols. All soft ticks treated in this study by PReDO protocol exhibited low intensity spectra with background noise. This study revealed that MALDI-TOF MS is able to identify hard ticks stored during decades in alcohol or dry (evaporated alcohol). SIGNIFICANCE OF THE STUDY: The correct identification of ticks, including vectors responsible for the transmission of infectious diseases in humans and animals is essential for their control. MALDI-TOF MS, a proteomic tool that has emerged in recent years, has become an innovative, accurate and alternative tool for the identification of arthropods, including ticks. However, previous studies reported that preservation of arthropods in alcohol modified the MS spectra obtained from specimens of the same species freshly collected or frozenly stored. In this study, a standard protocol was established for the identification of tick collections which had been stored for more than ten years in alcohol. Four different protocols were assessed. The analysis of the results showed that among the four protocols tested, two protocols named ReDO (Rehydration and incubation of the legs in 40 µl of HPLC water for 12 h in a dry bath at 37°) and PreDO (Drying of the legs for 12 h in a dry bath at 37 °C followed by rehydration and incubation in 40 µl of HPLC water for 12 h.) seem to be more appropriate for the MALDI-TOF MS identification of ticks from old collections preserved in alcohol or dry. This study is promising for the future, as it will make it possible to create a MALDI-TOF MS database from a wide range of ticks which have been stored for a long time in alcohol or which are dry stored in laboratories and museums around the world.


Assuntos
Carrapatos , Animais , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA