Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875251

RESUMO

The mango fruit plays a crucial role in providing essential nutrients to the human body and Pakistani mangoes are highly coveted worldwide. The escalating demand for agricultural products necessitates enhanced methods for monitoring and managing agricultural resources. Traditional field surveys are labour-intensive and time-consuming whereas remote sensing offers a comprehensive and efficient alternative. The field of remote sensing has witnessed substantial growth over time with satellite technology proving instrumental in monitoring crops on a large scale throughout their growth stages. In this study, we utilize novel data collected from a mango farm employing Landsat-8 satellite imagery and machine learning to detect mango orchards. We collected a total of 2,150 mango tree samples from a farm over six months in the province of Punjab, Pakistan. Then, we analyzed each sample using seven multispectral bands. The Landsat-8 framework provides high-resolution land surface imagery for detecting mango orchards. This research relies on independent data, offering an advantage for training more advanced machine learning models and yielding reliable findings with high accuracy. Our proposed optimized CART approach outperformed existing methods, achieving a remarkable 99% accuracy score while the k-Fold validation score also reached 99%. This research paves the way for advancements in agricultural remote sensing, offering potential benefits for crop management yield estimation and the broader field of precision agriculture.


Assuntos
Inteligência Artificial , Mangifera , Imagens de Satélites , Imagens de Satélites/métodos , Aprendizado de Máquina , Paquistão , Tecnologia de Sensoriamento Remoto/métodos , Agricultura/métodos , Frutas/crescimento & desenvolvimento , Humanos , Produtos Agrícolas/crescimento & desenvolvimento
2.
Front Comput Neurosci ; 17: 1204445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711504

RESUMO

Point clouds have evolved into one of the most important data formats for 3D representation. It is becoming more popular as a result of the increasing affordability of acquisition equipment and growing usage in a variety of fields. Volumetric grid-based approaches are among the most successful models for processing point clouds because they fully preserve data granularity while additionally making use of point dependency. However, using lower order local estimate functions to close 3D objects, such as the piece-wise constant function, necessitated the use of a high-resolution grid in order to capture detailed features that demanded vast computational resources. This study proposes an improved fused feature network as well as a comprehensive framework for solving shape classification and segmentation tasks using a two-branch technique and feature learning. We begin by designing a feature encoding network with two distinct building blocks: layer skips within, batch normalization (BN), and rectified linear units (ReLU) in between. The purpose of using layer skips is to have fewer layers to propagate across, which will speed up the learning process and lower the effect of gradients vanishing. Furthermore, we develop a robust grid feature extraction module that consists of multiple convolution blocks accompanied by max-pooling to represent a hierarchical representation and extract features from an input grid. We overcome the grid size constraints by sampling a constant number of points in each grid using a simple K-points nearest neighbor (KNN) search, which aids in learning approximation functions in higher order. The proposed method outperforms or is comparable to state-of-the-art approaches in point cloud segmentation and classification tasks. In addition, a study of ablation is presented to show the effectiveness of the proposed method.

3.
Sci Rep ; 12(1): 6166, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418566

RESUMO

Deep learning (DL) models are becoming pervasive and applicable to computer vision, image processing, and synthesis problems. The performance of these models is often improved through architectural configuration, tweaks, the use of enormous training data, and skillful selection of hyperparameters. The application of deep learning models to medical image processing has yielded interesting performance, capable of correctly detecting abnormalities in medical digital images, making them surpass human physicians. However, advancing research in this domain largely relies on the availability of training datasets. These datasets are sometimes not publicly accessible, insufficient for training, and may also be characterized by a class imbalance among samples. As a result, inadequate training samples and difficulty in accessing new datasets for training deep learning models limit performance and research into new domains. Hence, generative adversarial networks (GANs) have been proposed to mediate this gap by synthesizing data similar to real sample images. However, we observed that benchmark datasets with regions of interest (ROIs) for characterizing abnormalities in breast cancer using digital mammography do not contain sufficient data with a fair distribution of all cases of abnormalities. For instance, the architectural distortion and breast asymmetry in digital mammograms are sparsely distributed across most publicly available datasets. This paper proposes a GAN model, named ROImammoGAN, which synthesizes ROI-based digital mammograms. Our approach involves the design of a GAN model consisting of both a generator and a discriminator to learn a hierarchy of representations for abnormalities in digital mammograms. Attention is given to architectural distortion, asymmetry, mass, and microcalcification abnormalities so that training distinctively learns the features of each abnormality and generates sufficient images for each category. The proposed GAN model was applied to MIAS datasets, and the performance evaluation yielded a competitive accuracy for the synthesized samples. In addition, the quality of the images generated was also evaluated using PSNR, SSIM, FSIM, BRISQUE, PQUE, NIQUE, FID, and geometry scores. The results showed that ROImammoGAN performed competitively with state-of-the-art GANs. The outcome of this study is a model for augmenting CNN models with ROI-centric image samples for the characterization of abnormalities in breast images.


Assuntos
Neoplasias da Mama , Redes Neurais de Computação , Benchmarking , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mamografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA