Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; : 1-10, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35789583

RESUMO

Live microorganisms in the fermented foods termed probiotics and their secondary metabolites with bioactive potential were considered as potential anti-viral capabilities through various mechanisms. Given the importance of functional and fermented foods in disease prevention, there is a need to discuss the contextualization and deep understanding of the mechanism of action of these foods, particularly considering the appearance of coronavirus (COVID-19) pandemic, which is causing health concerns and increased social services globally. The mechanism of probiotic strains or their bioactive metabolites is due to stimulation of immune response through boosting T-lymphocytes, cytokines, and cell toxicity of natural killer cells. Proper consumption of these functional and fermented foods may provide additional antiviral approaches for public benefit by modulating the immune functions in the hosts. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05528-8.

2.
Bioenergy Res ; 16(1): 16-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35350609

RESUMO

Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

3.
Bioresour Technol ; 361: 127759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961508

RESUMO

The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.


Assuntos
Saccharum , Biocombustíveis , Biomassa , Celulose/química , Estudos Prospectivos , Saccharum/química
4.
Bioresour Technol ; 322: 124527, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33340948

RESUMO

Diols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussed.


Assuntos
Butileno Glicóis , Engenharia Metabólica , Vias Biossintéticas/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA