RESUMO
Background: Health care providers are mandated to deliver specialized care for the treatment and control of type 2 diabetes mellitus. In Malaysia, Diabetes Medication Therapy Adherence Clinics (DMTAC) in tertiary hospitals have designated pharmacists to administer these services. Objective: To assess the effects of pharmacist-led interventions within DMTAC on the outcomes of patients with type 2 diabetes mellitus in two distinct hospitals in Kedah, Malaysia. Methods: Patients with type 2 diabetes were randomly selected from the two hospitals included in this study. The study population was divided into two equal groups. The control group consisted of 200 patients receiving routine care from the hospitals. On the other hand, the intervention group included those patients with type 2 diabetes (200), who received separate counseling sessions from pharmacists in the DMTAC departments along with the usual treatment. The study lasted 1 year, during which both study groups participated in two distinct visits. Results: Parametric data were analyzed by a paired t-test and one-way ANOVA, while non-parametric data were analyzed by a Chi-squared test using SPSS v24. A p < 0.05 was considered statistically significant. The study presented the results of a greater reduction in HBA1c levels in the intervention group compared to the control group, i.e., 3.59 and 2.17% (p < 0.001). Moreover, the Systolic and Diastolic values of BP were also significantly reduced in the intervention group, i.e., 9.29 mmHg/7.58 mmHg (p < 0.005). Furthermore, cholesterol levels were significantly improved in patients in the intervention group, i.e., 0.87 mmol/L (p < 0.001). Conclusion: Based on the findings of the current study it has been proven that the involvement of pharmacists leads to improved control of diabetes mellitus. Therefore, it is recommended that the government initiate DMTAC services in both private and government hospitals and clinics throughout Malaysia. Furthermore, future studies should assess the impact of pharmacist interventions on other chronic conditions, including but not limited to asthma, arthritis, cancer, Alzheimer's disease, and dementia.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Farmacêuticos , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Adesão à MedicaçãoRESUMO
Replication is a fundamental aspect of cancer, and replication is about reproducing all the elements and structures that form a cell. Among them are DNA, RNA, enzymes, and coenzymes. All the DNA is doubled during each S (synthesis) cell cycle phase. This means that six billion nucleic acids must be synthesized in each cycle. Tumor growth, proliferation, and mutations all depend on this synthesis. Cancer cells require a constant supply of nucleotides and other macromolecules. For this reason, they must stimulate de novo nucleotide synthesis to support nucleic acid provision. When deregulated, de novo nucleic acid synthesis is controlled by oncogenes and tumor suppressor genes that enable increased synthesis and cell proliferation. Furthermore, cell duplication must be achieved swiftly (in a few hours) and in the midst of a nutrient-depleted and hypoxic environment. This also means that the enzymes participating in nucleic acid synthesis must work efficiently. pH is a critical factor in enzymatic efficiency and speed. This review will show that the enzymatic machinery working in nucleic acid synthesis requires a pH on the alkaline side in most cases. This coincides with many other pro-tumoral factors, such as the glycolytic phenotype, benefiting from an increased intracellular pH. An increased intracellular pH is a perfect milieu for high de novo nucleic acid production through optimal enzymatic performance.
RESUMO
Avoidance of medication errors is imperative for the safe use of medications, and community pharmacists are uniquely placed to identify and resolve the errors that may arise due to poorly handwritten prescriptions. Purpose: To explore the opinion and attitudes of community pharmacists towards poor prescription writing and their suggestions to overcome this concern. Methods: A cross-sectional, self-administered survey was conducted among the community pharmacists in the Jazan region, Saudi Arabia. Descriptive analysis and chi-square test were used at 5% p-value (p > 0.05) as the significance level. Results: The response rate for the survey was 78.66%, and 140 community pharmacists agreed to participate. Among the study subjects, the majority (73.57%) had a bachelor's degree. Nearly three-fourths (3/4) of the pharmacists (72.29%) chose to send the patient back to the prescriber when they found difficulty in interpreting the information from an illegible prescription. As many as 80.71% of the pharmacists believed that poorly handwritten prescriptions were the cause of actual errors when dispensing medications. The most commonly encountered problem due to poorly handwritten prescriptions was the commercial name of medicine, which was reported by around two-thirds (67.86%) of the pharmacists. The use of e-prescription was suggested by 72.86% of the pharmacists as a probable solution to encounter this problem. Conclusion: Our findings highlight the belief and attitudes of community pharmacists in the region and their opinions to solve this impending problem of poor prescription writing. Continuous professional development courses can be adopted to tackle the problem. Additionally, health authorities can work on incorporating and facilitating the use of e-prescription in the community sector, which can be a boon to physicians, pharmacists, and patients. Proper and extensive training is however needed before the implementation of e-prescribing.
RESUMO
Nano-crystallization is a new emerging strategy to promote the saturation solubility, dissolution rate and subsequent bioavailability of Biopharmaceutical Class II drugs. Capsaicin belongs to BCS class-II drugs having low water solubility and dissolution rate. Nano-crystals (NC) of pure Capsaicin was developed and optimized in order to increase its water solubility, dissolution and further to promote its adhesiveness to skin epidermis layer. NC formulations were subjected to stability studies, droplet size, surface charge, poly-dispensability index, drug content, entrapment efficiency, thermal analysis, surface morphology, crystalline studies, solubility profile, in vitro release and ex vivo permeation studies. In vivo anti-inflammatory assay (Carrageenan-induced paw edema) was performed in Sprague Dawley rats. Nanocrystals loaded with capsaicin showed particle size 120 ± 3.0 nm with surface charge of -20.7 ± 3.5 and PDI was 0.48 ± 1.5. Drug content and entrapment efficiency of T3 was 85% and 90 ± 1.9% respectively. Thermal studies predicted that melting peak of capsaicin was present in the formulation suggested that there was no interaction between active moieties and excipients in NC formulation. Surface morphology confirmed the presence of Nano-size crystals having rough crystalline surface. XRD proved that the capsaicin NC are successfully developed by using high speed homogenization. The solubility of capsaicin was found to be 12.0 ± 0.013 µg/mL in water. In vitro study revealed that 89.94 ± 1.9% of drug was released within 24 h. Similarly, drug permeation was 68.32 ± 1.83%, drug retained in skin was 16.13 ± 1.11% while drug retained on skin was 9.12 ± 0.14% after 12 h. The nanocrystals showed higher anti-inflammatory activity as compared to marketed product (Dicloran®). The study concluded that improvement in dissolution rate of capsaicin may potentially provide the opportunities in the development of a much cost-effective dosage forms that will produce improved pharmacological effects, but at low dose as compared to the already available products.
RESUMO
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
RESUMO
The purpose of this study was to develop a novel nano antibacterial formulation of dextran sulfate sodium polymer. The dextran sulfate sodium (DSS) nanoparticles were formulated with gelation technique. The nanoparticles exhibited significant physicochemical and effective antibacterial properties, with zeta potential of - 35.2 mV, particle size of 69.3 z d nm, polydispersity index of 0.6, and percentage polydispersity of 77.8. The DSS nanoparticles were stable up to 102 °C. Differential scanning calorimetry revealed an endothermic peak at 165.77 °C in 12.46 min, while XRD analysis at 2θ depicted various peaks at 21.56°, 33.37°, 38.73°, 47.17°, 52.96°, and 58.42°, indicating discrete nanoparticle formation. Antibacterial studies showed that the DSS nanoparticles were effective against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentrations of DSS nanoparticles for Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae) and Proteus vulgaris (P. vulgaris) were 150, 200, 250, 150, 200, 250, 250 µg/mL, respectively. The antibacterial effects of DSS nanoparticles were in the order E. coli (26 ± 1.2 mm) at 150 µg/mL > S. pyogenes (24.6 ± 0.8 mm) at 250 µg/mL > B. subtilis (23.5 ± 2 mm) at 150 µg/mL > K. pneumoniae (22 ± 2 mm) at 250 µg/mL > P. aeruginosa (21.8 ± 1 mm) at 200 µg/mL > S. aureus (20.8 ± 1 mm) at 200 µg/mL > P. vulgaris (20.5 ± 0.9 mm) at 250 µg/mL. These results demonstrate the antibacterial potency of DSS injectable nanoparticles.
Assuntos
Antibacterianos/farmacologia , Sulfato de Dextrana/farmacologia , Nanopartículas/química , Polímeros/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Coloides , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/química , Composição de Medicamentos/métodos , Liofilização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Injeções , Testes de Sensibilidade Microbiana , Nanopartículas/administração & dosagem , Tamanho da Partícula , Polímeros/químicaRESUMO
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
RESUMO
Abstract Quality is paramount and needs to be maintained throughout the shelf life of pharmaceuticals. The current study aimed to evaluate the quality, potency, and drug-drug interaction in an in vivo animal model by using two drugs, namely, metoprolol and glimepiride. Tablets were selected for their physical characteristics, such as shape, size, and color. Quality control tests, such as weight variation, hardness, friability, and disintegration tests, and invitro drug release studies were performed as per USP. Drug-drug interaction and in vivo studies were carried out according to the standard protocol of the animal ethics committee. Quality control tests of both the tablets were within the specified range. The cumulative release percentages of the drugs were 81.12% and 85.36% for Metoprolol Tartrate and Glimepiride, respectively, in a physiological buffer solution within 1 h. The combination of metoprolol and Glimepiride also significantly decreased the blood glucose level in diabetic animals. However, the blood glucose level increased in the group receiving metoprolol only, but the difference was not significant. The result suggested that the formulations are safe. However, the chronic use of this combination requires frequent monitoring of blood glucose level to improve its efficacy and for the patient's safety.