Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(20): 201803, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258649

RESUMO

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{µ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{µ},µp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics. We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of (4.93±0.76_{stat}±1.29_{sys})×10^{-38} cm^{2}, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.

2.
Phys Rev Lett ; 123(13): 131801, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697542

RESUMO

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.6×10^{20} protons on target of exposure. The measured differential cross sections are presented as a function of muon momentum, using multiple Coulomb scattering as a momentum measurement technique, and the muon angle with respect to the beam direction. We compare the measured cross sections to multiple neutrino event generators and find better agreement with those containing more complete treatment of quasielastic scattering processes at low Q^{2}. The total flux integrated cross section is measured to be 0.693±0.010(stat)±0.165(syst)×10^{-38} cm^{2}.

3.
Eur Phys J C Part Fields ; 82(7): 618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859696

RESUMO

DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA