RESUMO
Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.
RESUMO
The menace of microbial resistance and re-emerging disease is still a problem for healthcare givers globally, and the need for newer sources of potent antibiotics has become paramount. This study investigated the antimicrobial and antiulcer activities of Streptomyces isolate SOM013. Streptomyces isolates were cultivated and purified following standard microbiological protocols. Secondary metabolites were recovered and characterized from Streptomyces isolate SOM013 via broth fermentation and extraction. Varying concentrations (0.5 mg/mL, 0.025 mg/mL and 0.0125 mg/mL) of the SOM013 extract were used for antimicrobial screening against resistant bacteria and medically important fungi (methicillin-resistant Escherichia coli, Oxacillin resistant Helicobacter pylori, Shigella spp, extended broad-spectrum resistant Pseudomonas aeruginosa, Streptococcus spp, Campylobacter spp, Candida albicans, Aspergillus niger, and Aspergillus flavus). The antiulcer activity of the SOM013 was also examined in a methanol-induced gastric ulcer animal model. A total of 23 Streptomyces spp were recovered from the study. Methanolic extract of the SOM013 isolates was more potent across the clinical test microorganisms compared to water extract. The antimicrobial activity was dose dependent, with methanolic extract at 0.05 g/mL displaying the highest zone of inhibition (18.8 ± 0.3 mm) when tested against extended broad-spectrum resistant Pseudomonas aeruginosa. Further, the extract's ulcer index and protection efficacy were significant as the concentration increased (P < 0.01). SOM013 isolate has a moderate antimicrobial and high antiulcer activity worthy of pharmacological exploration.
RESUMO
Background: The prevalence and patterns of aphrodisiac drug consumption without prescription among men in Saudi Arabia remain underexplored, with limited empirical evidence available. Given the potential health implications and societal considerations, a comprehensive investigation is warranted. Aim: Assess the Prevalence, pattern of use and the associated factors of Aphrodisiac drugs consumption without prescription among men at Najran City, Saudi Arabia. Methods: Employing a cross-sectional descriptive study, 500 participants were included through convenience sampling. The utilized questionnaires covered a range of data, including socio-demographic information, patterns of aphrodisiac use, knowledge about aphrodisiacs, lifestyle details, a sexual health inventory for men, and a perceived stress level scale. Results: The study reveals a significant prevalence of unsanctioned aphrodisiac drug use (31%) among men in Najran City, Saudi Arabia, with a majority (79.3%) consuming these substances four times monthly. Associated disparities in knowledge, lifestyle, stress, and sexual function underscore the urgent need for policy interventions and tailored health education initiatives for this demographic. Conclusion: Approximately one-third of the sampled population engaged in the unsanctioned use of aphrodisiac drugs, with the majority utilizing them four times monthly. Tablets emerged as the most prevalent form of consumption. Commonly cited motives and justifications included peer influence and the perceived safety of aphrodisiacs. Influential factors encompassed levels of knowledge, lifestyle, stress levels, erectile function, age, education, and the number of wives. Recommendations: Urgent policy interventions are warranted to regulate the acquisition and distribution of aphrodisiacs. Tailored health education initiatives should be implemented for married and prospective married men.
RESUMO
One of the emerging epidemic concerns is Monkeypox disease which is spreading globally. This disease is caused by the monkeypox virus (MPXV), with an increasing global incidence with an outbreak in 2022. One of the novel targets for monkeypox disease is thymidylate kinase, which is involved in pyrimidine metabolism. In this study, docking-based virtual screening and molecular dynamics techniques were employed in addition to the machine learning (ML) model to investigate the potential anti-viral natural small compounds to inhibit thymidylate kinase of MPXV. Several potential hits were identified through high-throughput virtual screening, and further top three candidates were selected, which ranked using the ML model. These three compounds were then examined under molecular dynamics simulation and MM/GBSA-binding free energy analysis. Among these, Chlorhexidine HCl showed high potential for binding to the thymidylate kinase with stable and consistent conformation with RMSD < 0.3 nm. The MM/GBSA analysis also showed the minimum binding free energy (ΔGTOTAL) of -62.41 kcal/mol for this compound. Overall, this study used structure-based drug design complemented by machine learning-guided ligand-based drug design to screen potential hit compounds from the anti-viral natural compound database.
RESUMO
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
RESUMO
Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.
Assuntos
Vacinas , Humanos , Simulação de Acoplamento Molecular , Prevotella intermedia , Epitopos de Linfócito TRESUMO
Background and Objectives: The BaeR protein is involved in the adaptation system of A. baumannii and is associated with virulence factors responsible for systemic infections in hospitalized patients. This study was conducted to characterize putative epitope peptides for the design of vaccines against BaeR protein, using an immune-informatic approach. Materials and Methods: FASTA sequences of BaeR from five different strains of A. baumannii were retrieved from the UNIPROT database and evaluated for their antigenicity, allergenicity and vaccine properties using BepiPred, Vaxijen, AlgPred, AntigenPro and SolPro. Their physio-chemical properties were assessed using the Expasy Protparam server. Immuno-dominant B-cell and T-cell epitope peptides were predicted using the IEDB database and MHC cluster server with a final assessment of their interactions with TLR-2. Results: A final selection of two peptide sequences (36aa and 22aa) was made from the 38 antigenic peptides. E1 was considered a soluble, non-allergenic antigen, and possessed negative GRAVY values, substantiating the hydrophilic nature of the proteins. Further analysis on the T-cell epitopes, class I immunogenicity and HLA allele frequencies yielded T-cell immuno-dominant peptides. The protein-peptide interactions of the TLR-2 receptor showed good similarity scores in terms of the high number of hydrogen bonds compared to other protein-peptide interactions. Conclusions: The two epitopes predicted from BaeR in the present investigation are promising vaccine candidates for targeting the TCS of A. baumannii in systemic and nosocomial infections. This study also demonstrates an alternative strategy to tackling and mitigating MDR strains of A. baumannii and provides a useful reference for the design and construction of novel vaccine candidates against this bacteria.
Assuntos
Acinetobacter baumannii , Humanos , Receptor 2 Toll-Like , Peptídeos/química , Epitopos de Linfócito T , Sequência de AminoácidosRESUMO
Alkhumra hemorrhagic fever virus (AHFV) has spread beyond the Middle East. However, the actual global prevalence of the virus is yet unknown. This systematic review and meta-analysis, thus, followed the standard reporting guidelines to provide comprehensive details on the prevalence of Alkhumra virus infection globally. The pooled prevalence of AHFV globally was estimated at 1.3% (95% CI: 0.3-6.3), with higher prevalence in humans (3.4%, 95% CI: 0.4-25.0) compared to animals (0.7%, 95% CI: 0.3-1.8). The prevalence in ticks and camels were 0.7% and 0.2%, respectively. Overall, there was a high prevalence rate in Asia (2.6%) compared to Africa (0.5%), and a distinctly higher prevalence in Saudi Arabia (4.6%) compared to other parts of the world (<1%). Lower surveillance rate in humans was observed in recent years. These findings will aid public health preparedness, surveillance, and development of preventive measures due to AHFV's potential for outbreaks and severe health consequences.
Assuntos
Saúde Global , Animais , Humanos , África/epidemiologia , Ásia/epidemiologia , Camelus/virologia , Vírus da Encefalite Transmitidos por Carrapatos , Prevalência , Arábia Saudita/epidemiologia , Carrapatos/virologiaRESUMO
A man who is 38 years old and diagnosed with attention-deficit hyperactivity disorder was prescribed methylphenidate. Three weeks later, he began experiencing progressive shortness of breath and coughing. Imaging of his chest showed patchy bilateral ground-glass opacities, and bronchoscopy revealed a 15% eosinophil count in his bronchoalveolar lavage. A transbronchial biopsy confirmed a diagnosis of eosinophilic pneumonia. The patient's condition improved when he was given steroids and stopped taking methylphenidate. However, he developed the same symptoms again a few days after restarting the medication, along with a skin rash. This strongly suggests that methylphenidate was the cause of his eosinophilic pneumonia.
RESUMO
L eishmaniasis is a prevalent disease that impacts 98 countries and territories, mainly in Africa, Asia, and South America. It can cause substantial illness and death, particularly in its visceral manifestation that can be specifically targeted in the development of medications to combat leishmaniasis. This study has found natural compounds with possible inhibitory activity against APX using a reliable and accurate QSAR model. Despite the severe side effects of current treatments and the absence of an effective vaccination, these compounds show promise as a potential treatment for the disease. Nine hit compounds were found, and subsequent molecular docking was performed. Estradiol cypionate showed the lowest binding energy (- 10.5 kcal/mol), thus showing the strongest binding, and also had the strongest binding affinity, with a ΔGTotal of - 26.31 ± 3.01 kcal/mol, second only to the control molecule. Additionally, three hits viz. cloxacillin-sodium (- 16.57 ± 2.89 kcal/mol), cinchonidine (- 16.04 ± 3.27 kcal/mol), and quinine hydrochloride dihydrate (13.38 ± 1.06 kcal/mol) also showed significant binding affinity. Multiple interactions between drugs and active site residues demonstrated a substantial binding affinity with the target protein. The identified compounds exhibited drug-like effects and were orally bioavailable based on their ADME-toxicology features. Overall, estradiol cypionate, cloxacillin sodium, cinchonidine, and quinine hydrochloride dihydrate all exhibited inhibitory effects on the APX enzyme of Leishmania donovani. These results suggest that further investigation is needed to explore the potential of developing novel anti-leishmaniasis drugs using these compounds.
RESUMO
The West Nile virus (WNV) is the causative agent of West Nile disease (WND), which poses a potential risk of meningitis or encephalitis. The aim of the study was to design an epitope-based vaccine for WNV by utilizing computational analyses. The epitope-based vaccine design process encompassed WNV sequence collection, phylogenetic tree construction, and sequence alignment. Computational models identified B-cell and T-cell epitopes, followed by immunological property analysis. Epitopes were then modeled and docked with B-cell receptors, MHC I, and MHC II. Molecular dynamics simulations further explored dynamic interactions between epitopes and receptors. The findings indicated that the B-cell epitope QINHHWHKSGSSIG, along with three T-cell epitopes (FLVHREWFM for MHC I, NPFVSVATANAKVLI for MHC II, and NAYYVMTVGTKTFLV for MHC II), successfully passed the immunological evaluations. These four epitopes were further subjected to docking and molecular dynamics simulation studies. Although each demonstrated favorable affinities with their respective receptors, only NAYYVMTVGTKTFLV displayed a stable interaction with MHC II during MDS analysis, hence emerging as a potential candidate for a WNV epitope-based vaccine. This study demonstrates a comprehensive approach to epitope vaccine design, combining computational analyses, molecular modeling, and simulation techniques to identify potential vaccine candidates for WNV.
Assuntos
Vírus do Nilo Ocidental , Epitopos de Linfócito T , Imunoinformática , Filogenia , Epitopos de Linfócito B , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Vacinas de Subunidades AntigênicasRESUMO
BACKGROUND: Advancements in genetic disorder management mark a transformative era in healthcare. This study aimed to assess knowledge, attitudes, and barriers to using genetic services among the Egyptian population. METHODS: A cross-sectional study was used to achieve the aim of the study. A convenient sample was used to involve 385 residents of Damanhur City and Beni-Suef City to represent Upper and Lower Egypt. A validated questionnaire covering socio-demographic details, genetic knowledge, attitudes, and perceived barriers to using genetic services was used. RESULTS: Regarding genetic knowledge, 70.9% of the participants reported an unsatisfactory level of knowledge about genetics. Furthermore, 67.6% expressed a negative attitude toward genetic services. Concerns about whether the test result is positive were the most common obstacle, cited by 64.94% of participants, followed by cost, which 60.78% of people found to be a major barrier. Significant associations emerge between socio-demographic factors and awareness levels. CONCLUSION: The findings illuminate significant gaps in knowledge and attitude levels where less than a third of the participants had a satisfactory level of knowledge and about one-third had a positive attitude regarding genetic testing. Barriers such as concerns about treatment strategies, financial constraints, and conflict with personal beliefs emerge as critical obstacles. The identified associations between socio-demographic factors and awareness levels underscore the need for targeted interventions tailored to specific demographic groups. RECOMMENDATIONS: This study recommends developing and implementing culturally sensitive awareness campaigns about genetics tailored to the specific demographic characteristics of the Egyptian population.
RESUMO
Objectives: The rise in Carbapenem-resistant Enterobacterales (CRE) is perturbing. To curb the menace of CRE, a comprehensive understanding of its prevalence and epidemiology is crucial. As varying reports abound, the true prevalence of CRE in Nigeria remains unknown. Here, we conducted a systematic review and meta-analysis following standard guidelines to assess the situation of CRE in Nigeria. Methods: We searched electronic databases including Pubmed, ScienceDirect, Scopus, Web of Science, and Google Scholar for articles providing information on CRE in Nigeria. The data gathered were analyzed using OpenMeta Analyst and Comprehensive Meta-Analysis software. The random-effect model was employed to calculate pooled resistance to carbapenem antibiotics. Results: From 321 retrieved records, 57 were finally included. The studies were predominantly from the South-West region (n = 19). Escherichia coli and Klebsiella pneumoniae were the most frequently tested Enterobacterales among the included studies. The pooled prevalence estimate for imipenem resistance among CRE was 11.2 % (95 % CI: 7.9-15.7). Meropenem resistance had an estimate of 13.5 % (95 % CI: 9.1-19.6), whereas ertapenem and doripenem were estimated at 17.0 % (95 % CI: 9.9-27.7) and 37.9 % (95 % CI: 15.0-67.8), respectively. High heterogeneity (I 2 >85 %, p < 0.001) was observed for the estimates. The highest resistance rate to imipenem (28.4 %), meropenem (37.2 %) and ertapenem (46.5 %) were observed for the South-South region. Based on specific CRE genera, Morganella sp. was the most resistant (37.0 %) while Escherichia sp. was the least (9.4 %). Our analyses also revealed a progressive increase in resistance to carbapenem antibiotics over the years. Conclusion: This study highlights carbapenem resistance as a concern in Africa's most populous nation, underscoring the need for proactive measures to address and mitigate the threat of CRE.
RESUMO
Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.
RESUMO
Recent monkeypox virus (MPXV) infections show the risk of MPXV transmission that persists today and the significance of surveillance and quick response methods to stop the virus's spread. Currently, the monkeypox virus infection is not specifically treated. In this study, QSAR models were designed using known inhibitors of cysteine proteinase from the vaccinia virus, where the Random Forest model and Ridge model had showed the best correlation between predicted and observed EC50. These models were used to screen Maliaceae family phytochemicals against MPXV cysteine proteinase. The compound, IMPHY010637 was detected in top 5 from both the QSAR screening models and showed best docked score (-8.6 kcal/mol) and thus selected for further investigation. Further, the IMPHY010637 showed interaction with the catalytic residue His241 of the protein as reported in earlier studies. The ADMET analysis of the compound showed the acceptable drug-like properties of IMPHY010637. However, these properties could be improved after experimental validation of protein-ligand binding. Both docked complex and poses created in 100 ns MD simulation of the protein-ligand complex showed the presence of multiple hydrogen bonds. RMSD and conformation analysis showed stable binding of IMPHY010637 with the cysteine proteinase of MPXV at its active site. Compared to the known inhibitor, IMPHY010637 showed better binding with the protein as observed by the PCA and MM/GBSA analysis. This study concluded IMPHY010637 as a potential inhibitor for the cysteine proteinase of MPXV using computational methods that could be tested in in-vitro experiments.Communicated by Ramaswamy H. Sarma.
RESUMO
OBJECTIVES: To ascertain the prevalence of transfusion transmissible infections (TTIs) across diverse donor groups in the Najran province. Additionally, to establish a potential association between the development of TTI and the donors' blood group, as determined by the ABO/Rh blood grouping system. METHODS: Blood donation data of 4120 donors, spanning from January to December 2020, were retrospectively reviewed. The blood were screened for TTI markers, including hepatitis B surface antigen (HBsAg), anti-hepatitis B core (anti-HBc), anti-hepatitis C virus (anti-HCV), anti-human immunodeficiency viruses 1 and 2 (anti-HIV1&2), anti-human T-lymphotropic virus types 1 and 2 (anti-HTLV-1&2), and syphilis antigen. RESULTS: Positive TTI markers were detected in 10.9% of the donors. The most detected TTI marker was anti-HBc (8.9%), followed by HBsAg (0.7%). Other markers were individually detected in <1% of the donors. Anti-HBc-positive was significantly elevated among non-Saudi blood donors. There was an association between age groups and anti-HCV (p=0.002), anti-HTLV (p=0.004) and syphilis antigen (p=0.02) markers positivity. The AB positive blood group exhibited the most positivity for TTI markers, followed by O positive blood group. Similarly, association was found between ABO group and HBsAg (p=0.01), anti-HBc (p=0.001), and anti-HCV (p<0.001) markers positivity. CONCLUSION: Emphasis on implementing robust screening measures for donated blood is underscored by this study. There is the need for future study to extensively evaluate TTI status to enhance our understanding of the trend in TTI.
Assuntos
Sistema ABO de Grupos Sanguíneos , Doadores de Sangue , Antígenos de Superfície da Hepatite B , Humanos , Adulto , Antígenos de Superfície da Hepatite B/sangue , Arábia Saudita/epidemiologia , Masculino , Doadores de Sangue/estatística & dados numéricos , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Sífilis/epidemiologia , Sífilis/sangue , Adulto Jovem , Reação Transfusional/epidemiologia , Reação Transfusional/sangue , Prevalência , Adolescente , Hepatite B/epidemiologia , Hepatite B/sangue , Anticorpos Anti-Hepatite B/sangue , Infecções por HIV/epidemiologia , Infecções por HIV/sangueRESUMO
BACKGROUND: The COVID-19 pandemic has had a significant impact globally, and understanding the relationship between inflammatory markers and disease progression is crucial for effective management. This retrospective study aimed to examine the association between various inflammatory markers, such as C-reactive protein (CRP), the erythrocyte sedimentation rate (ESR), lactate dehydrogenase (LDH), D-dimer, ferritin, and procalcitonin (PCT), and the characteristics of disease progression and outcomes in individuals affected by COVID-19. METHODS: This study collected raw data from 470 patients who tested positive for SARS-CoV-2 using RT-PCR. RESULTS: The logistic regression analysis revealed that elevated LDH levels were associated with male gender, ICU admission, low oxygen saturation (O2 < 93%), the need for mechanical ventilation, death, and the presence of lung infiltrates. Higher D-dimer levels were associated with older age, diabetes mellitus, cardiac disease, and low oxygen saturation. Ferritin levels were significantly associated with older age, ICU admission, low oxygen saturation, mechanical ventilation, and lung infiltrates. In contrast, CRP was only significant regarding lung infiltrates and procalcitonin levels were not significantly associated with any of the examined factors. CONCLUSION: This study highlights the importance of monitoring key inflammatory markers, such as LDH, D-dimer, and ferritin, as they are significantly associated with the severity of COVID-19 illness. These findings can inform clinical decision-making and guide the development of targeted interventions to improve patient outcomes.
RESUMO
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
RESUMO
One of the most important breakthroughs in healthcare is the development of vaccines. The life cycle and its gene expression in the numerous virus-associated disorders must be considered when choosing the target vaccine antigen for Epstein-Barr virus (EBV). The vaccine candidate used in the current study will also be effective against all other herpesvirus strains, based on the conservancy study, which verified that the protein is present in all herpesviruses. From the screening, two B-cell epitopes, four MHC-I, and five MHC-II restricted epitopes were chosen for further study. The refined epitopes indicated 70.59% coverage of the population in Malaysia and 93.98% worldwide. After removing the one toxin (PADRE) from the original vaccine design, it was projected that the new vaccine would not be similar to the human host and would instead be antigenic, immunogenic, non-allergenic, and non-toxic. The vaccine construct was stable, thermostable, soluble, and hydrophilic. The immunological simulation projected that the vaccine candidate would be subject to a long-lasting active adaptive response and a short-lived active innate response. With IgM concentrations of up to 450 cells per mm3 and active B-cell concentrations of up to 400 cells per mm3, the B-cells remain active for a considerable time. The construct also discovered other conformational epitopes, improving its ability to stimulate an immune response. This suggests that, upon injection, the epitope will target the B-cell surface receptors and elicit a potent immune response. Furthermore, the discotope analysis confirmed that our conformational B-cell epitope was not displaced during the design. Lastly, the docking complex was stable and exhibited little deformability under heat pressure. These computational results are very encouraging for future testing of our proposed vaccine, which may potentially help in the management and prevention of EBV infections worldwide.
RESUMO
The world faces multiple public health emergencies simultaneously, such as COVID-19 and Monkeypox (mpox). mpox, from being a neglected disease, has emerged as a global threat that has spread to more than 100 nonendemic countries, even as COVID-19 has been spreading for more than 3 years now. The general mpox symptoms are similar to chickenpox and measles, thus leading to a possible misdiagnosis. This study aimed at facilitating a rapid and high-brevity mpox diagnosis. Reportedly, mpox circulates among particular groups, such as sexually promiscuous gay and bisexuals. Hence, selectively vaccinating, isolating, and treating them seems difficult due to the associated social stigma. Deep learning (DL) has great promise in image-based diagnosis and could help in error-free bulk diagnosis. The novelty proposed, the system adopted, and the methods and approaches are discussed in the article. The present work proposes the use of DL models for automated early mpox diagnosis. The performances of the proposed algorithms were evaluated using the data set available in public domain. The data set adopted for the study was meant for both training and testing, the details of which are elaborated. The performances of CNN, VGG19, ResNet 50, Inception v3, and Autoencoder algorithms were compared. It was concluded that CNN, VGG19, and Inception v3 could help in early detection of mpox skin lesions, and Inception v3 returned the best (96.56%) classification accuracy.