Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 113(5): 906-922, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31954084

RESUMO

Bacillus subtilis can import DNA from the environment by an uptake machinery that localizes to a single cell pole. We investigated the roles of ComEB and of the ATPase ComGA during the state of competence. We show that ComEB plays an important role during competence, possibly because it is necessary for the recruitment of GomGA to the cell pole. ComEB localizes to the cell poles even upon expression during exponential phase, indicating that it can serve as polar marker. ComEB is also a deoxycytidylate monophosphate (dCMP) deaminase, for the function of which a conserved cysteine residue is important. However, cysteine-mutant ComEB is still capable of natural transformation, while a comEB deletion strain is highly impaired in competence, indicating that ComEB confers two independent functions. Single-molecule tracking (SMT) reveals that both proteins exchange at the cell poles between bound and unbound in a time scale of a few milliseconds, but turnover of ComGA increases during DNA uptake, whereas the mobility of ComEB is not affected. Our data reveal a highly dynamic role of ComGA during DNA uptake and an unusual role for ComEB as a mediator of polar localization, localizing by diffusion-capture on an extremely rapid time scale and functioning as a moonlighting enzyme.


Assuntos
Adenosina Trifosfatases/fisiologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , DCMP Desaminase/fisiologia , Transformação Bacteriana , Adenosina Trifosfatases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Polaridade Celular , DCMP Desaminase/genética , DNA Bacteriano , Proteínas de Ligação a DNA , Proteínas de Fluorescência Verde , Mutação , Ligação Proteica , Proteínas Recombinantes de Fusão , Imagem Individual de Molécula
2.
Environ Microbiol ; 14(8): 1982-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22498339

RESUMO

Pyoverdine I (PVDI) is the major siderophore produced by Pseudomonas aeruginosa PAO1 to import iron. Its biosynthesis requires the coordinated action of cytoplasmic, periplasmic and membrane proteins. The individual enzymatic activities of these proteins are well known. However, their subcellular distribution in particular areas of the cytoplasm, periplasm, or within the membrane has never been investigated. We used chromosomal replacement to generate P.aeruginosa strains producing fluorescent fusions with PvdA, one of the initial enzymes in the biosynthetic pathway of PVDI in the cytoplasm, and PvdQ, involved in the maturation of PVDI in the periplasm. Cellular fractionation indicated that a substantial amount of PvdA-YFP was located in the membrane fraction. Epifluorescence microscopy imaging showed that PvdA-YFP was mainly clustered at the old cell pole of bacteria, indicating a polar segregation of the protein. Epifluorescence and TIRF imaging on cells expressing labelled PvdQ showed that this enzyme was uniformly distributed in the periplasm, in contrast with PvdA-YFP. The description of the intracellular distribution of these enzymes contributes to the understanding of the PVDI biosynthetic pathway.


Assuntos
Oxigenases de Função Mista/metabolismo , Oligopeptídeos/biossíntese , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Ferro/metabolismo , Oxigenases de Função Mista/genética , Oligopeptídeos/genética , Periplasma/metabolismo , Estabilidade Proteica , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Sideróforos/metabolismo
3.
Sci Rep ; 8(1): 16450, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401797

RESUMO

Single-particle (molecule) tracking (SPT/SMT) is a powerful method to study dynamic processes in living bacterial cells at high spatial and temporal resolution. We have performed single-molecule imaging of early DNA double-strand break (DSB) repair events during homologous recombination in the model bacterium Bacillus subtilis. Our findings reveal that DNA repair centres arise at all sites on the chromosome and that RecN, RecO and RecJ perform fast, enzyme-like functions during detection and procession of DNA double strand breaks, respectively. Interestingly, RecN changes its diffusion behavior upon induction of DNA damage, from a largely diffusive to a DNA-scanning mode, which increases efficiency of finding all sites of DNA breaks within a frame of few seconds. RecJ continues being bound to replication forks, but also assembles at many sites on the nucleoid upon DNA damage induction. RecO shows a similar change in its mobility as RecN, and also remains bound to sites of damage for few hundred milliseconds. Like RecN, it enters the nucleoid in damaged cells. Our data show that presynaptic preparation of DSBs including loading of RecA onto ssDNA is highly rapid and dynamic, and occurs throughout the chromosome, and not only at replication forks or only at distinct sites where many breaks are processes in analogy to eukaryotic DNA repair centres.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Rastreamento de Células/métodos , Reparo do DNA , DNA Bacteriano/genética , Imagem Individual de Molécula/métodos , Análise Espaço-Temporal , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Recombinação Homóloga , Processamento de Imagem Assistida por Computador , Recombinação Genética
4.
DNA Repair (Amst) ; 55: 17-30, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28511132

RESUMO

Bacillus subtilis c-di-AMP synthase DisA and RecA-related RadA/Sms are involved in the repair of DNA damage in exponentially growing cells. We provide genetic evidence that DisA or RadA/Sms is epistatic to the branch migration translocase (BMT) RecG and the Holliday junction (HJ) resolvase RecU in response to DNA damage. We provide genetic evidence damage. Functional DisA-YFP formed dynamic foci in exponentially growing cells, which moved through the nucleoids at a speed compatible with a DNA-scanning mode. DisA formed more static structures in the absence of RecU or RecG than in wild type cells, while dynamic foci were still observed in cells lacking the BMT RuvAB. Purified DisA synthesizes c-di-AMP, but interaction with RadA/Sms or with HJ DNA decreases DisA-mediated c-di-AMP synthesis. RadA/Sms-YFP also formed dynamic foci in growing cells, but the foci moved throughout the cells rather than just on the nucleoids, and co-localized rarely with DisA-YFP foci, suggesting that RadA/Sms and DisA interact only transiently in unperturbed conditions. Our data suggest a model in which DisA moving along dsDNA indicates absence of DNA damage/replication stress via normal c-di-AMP levels, while interaction with HJ DNA/halted forks leads to reduced c-di-AMP levels and an ensuing block in cell proliferation. RadA/Sms may be involved in modulating DisA activities.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleotidiltransferases/metabolismo , Reparo de DNA por Recombinação , Bacillus subtilis/genética , Dano ao DNA , Replicação do DNA , DNA Bacteriano/metabolismo , Fosfatos de Dinucleosídeos/biossíntese , Resolvases de Junção Holliday
5.
PLoS One ; 8(10): e79111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205369

RESUMO

Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe.


Assuntos
Proteínas de Bactérias/biossíntese , Ferro/metabolismo , Oligopeptídeos/biossíntese , Pseudomonas aeruginosa/metabolismo , Polaridade Celular , Recuperação de Fluorescência Após Fotodegradação , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA