Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(48): 19715-20, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150575

RESUMO

Determining the genetic pathways that viruses traverse to establish in new host species is crucial to predict the outcome of cross-species transmission but poorly understood for most host-virus systems. Using sequences encoding 78% of the rabies virus genome, we explored the extent, repeatability and dynamic outcome of evolution associated with multiple host shifts among New World bats. Episodic bursts of positive selection were detected in several viral proteins, including regions associated with host cell interaction and viral replication. Host shifts involved unique sets of substitutions, and few sites exhibited repeated evolution across adaptation to many bat species, suggesting diverse genetic determinants over host range. Combining these results with genetic reconstructions of the demographic histories of individual viral lineages revealed that although rabies viruses shared consistent three-stage processes of emergence in each new bat species, host shifts involving greater numbers of positively selected substitutions had longer delays between cross-species transmission and enzootic viral establishment. Our results point to multiple evolutionary routes to host establishment in a zoonotic RNA virus that may influence the speed of viral emergence.


Assuntos
Evolução Biológica , Quirópteros/virologia , Vírus da Raiva/fisiologia , Animais , Teorema de Bayes , Genoma Viral , Dados de Sequência Molecular , Vírus da Raiva/genética
2.
Curr Opin Insect Sci ; 59: 101089, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506879

RESUMO

In many species, migration can increase parasite burdens or diversity as hosts move between diverse habitats with different parasite assemblages. On the other hand, migration can reduce parasite prevalence by letting animals escape infested habitats, or by exacerbating the costs of parasitism, leading to culling or dropout. How the balance between these negative and positive interactions is maintained or how they will change under anthropogenic pressure remains poorly understood. Here, we summarize the relationship between migration and infectious disease in monarch butterflies, finding that migration can reduce parasite prevalence through a combination of migratory culling and dropout. Because parasite prevalence has risen in recent decades, these processes are now resulting in the loss of tens of millions of monarchs. We highlight the remaining questions, asking how migration influences population genetics and virulence, how the establishment of resident populations interferes with migration, and whether infection can interfere with migratory cognition.

3.
Ecology ; 92(2): 342-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21618914

RESUMO

Seasonal migration occurs in many animal systems and is likely to influence interactions between animals and their parasites. Here, we focus on monarch butterflies (Danaus plexippus) and a protozoan parasite (Ophryocystis elektroscirrha) to investigate how host migration affects infectious disease processes. Previous work showed that parasite prevalence was lower among migratory than nonmigratory monarch populations; two explanations for this pattern are that (1) migration allows animals to periodically escape contaminated habitats (i.e., migratory escape), and (2) long-distance migration weeds out infected animals (i.e., migratory culling). We combined field-sampling and analysis of citizen science data to examine spatiotemporal trends of parasite prevalence and evaluate evidence for these two mechanisms. Analysis of within-breeding-season variation in eastern North America showed that parasite prevalence increased from early to late in the breeding season, consistent with the hypothesis of migratory escape. Prevalence was also positively related to monarch breeding activity, as indexed by larval density. Among adult monarchs captured at different points along the east coast fall migratory flyway, parasite prevalence declined as monarchs progressed southward, consistent with the hypothesis of migratory culling. Parasite prevalence was also lower among monarchs sampled at two overwintering sites in Mexico than among monarchs sampled during the summer breeding period. Collectively, these results indicate that seasonal migration can affect parasite transmission in wild animal populations, with implications for predicting disease risks for species with threatened migrations.


Assuntos
Migração Animal/fisiologia , Apicomplexa/fisiologia , Borboletas/fisiologia , Borboletas/parasitologia , Animais , Asclepias , Interações Hospedeiro-Parasita , Larva , América do Norte , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA