Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO J ; 34(8): 1056-77, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652077

RESUMO

Persistent experience-driven adaptation of brain function is associated with alterations in gene expression patterns, resulting in structural and functional neuronal remodeling. How synaptic activity-in particular presynaptic performance-is coupled to gene expression in nucleus remains incompletely understood. Here, we report on a role of CtBP1, a transcriptional co-repressor enriched in presynapses and nuclei, in the activity-driven reconfiguration of gene expression in neurons. We demonstrate that presynaptic and nuclear pools of CtBP1 are interconnected and that both synaptic retention and shuttling of CtBP1 between cytoplasm and nucleus are co-regulated by neuronal activity. Finally, we show that CtBP1 is targeted and/or anchored to presynapses by direct interaction with the active zone scaffolding proteins Bassoon and Piccolo. This association is regulated by neuronal activity via modulation of cellular NAD/NADH levels and restrains the size of the CtBP1 pool available for nuclear import, thus contributing to the control of activity-dependent gene expression. Our combined results reveal a mechanism for coupling activity-induced molecular rearrangements in the presynapse with reconfiguration of neuronal gene expression.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/fisiologia , Animais , Células COS , Proteínas de Transporte/metabolismo , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
2.
EMBO J ; 32(7): 954-69, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23403927

RESUMO

The presynaptic active zone (AZ) is a specialized microdomain designed for the efficient and repetitive release of neurotransmitter. Bassoon and Piccolo are two high molecular weight components of the AZ, with hypothesized roles in its assembly and structural maintenance. However, glutamatergic synapses lacking either protein exhibit relatively minor defects, presumably due to their significant functional redundancy. In the present study, we have used interference RNAs to eliminate both proteins from glutamatergic synapses, and find that they are essential for maintaining synaptic integrity. Loss of Bassoon and Piccolo leads to the aberrant degradation of multiple presynaptic proteins, culminating in synapse degeneration. This phenotype is mediated in part by the E3 ubiquitin ligase Siah1, an interacting partner of Bassoon and Piccolo whose activity is negatively regulated by their conserved zinc finger domains. Our findings demonstrate a novel role for Bassoon and Piccolo as critical regulators of presynaptic ubiquitination and proteostasis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteólise , Ubiquitinação/fisiologia , Animais , Proteínas do Citoesqueleto/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Interferência de RNA , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Dedos de Zinco
3.
J Neurosci ; 32(32): 11095-108, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875941

RESUMO

Vesicular trafficking of presynaptic and postsynaptic components is emerging as a general cellular mechanism for the delivery of scaffold proteins, ion channels, and receptors to nascent and mature synapses. However, the molecular mechanisms leading to the selection of cargos and their differential transport to subneuronal compartments are not well understood, in part because of the mixing of cargos at the plasma membrane and/or within endosomal compartments. In the present study, we have explored the cellular mechanisms of active zone precursor vesicle assembly at the Golgi in dissociated hippocampal neurons of Rattus norvegicus. Our studies show that Piccolo, Bassoon, and ELKS2/CAST exit the trans-Golgi network on a common vesicle that requires Piccolo and Bassoon for its proper assembly. In contrast, Munc13 and synaptic vesicle proteins use distinct sets of Golgi-derived transport vesicles, while RIM1α associates with vesicular membranes in a post-Golgi compartment. Furthermore, Piccolo and Bassoon are necessary for ELKS2/CAST to leave the Golgi in association with vesicles, and a core domain of Bassoon is sufficient to facilitate formation of these vesicles. While these findings support emerging principles regarding active zone differentiation, the cellular and molecular analyses reported here also indicate that the Piccolo-Bassoon transport vesicles leaving the Golgi may undergo further changes in protein composition before arriving at synaptic sites.


Assuntos
Complexo de Golgi/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Fatores Etários , Animais , Anticorpos/farmacologia , Autoantígenos/metabolismo , Axônios/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptofisina/metabolismo , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo , Proteínas rab de Ligação ao GTP , Rede trans-Golgi/metabolismo
4.
J Cell Biol ; 168(5): 825-36, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15728193

RESUMO

The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel alpha1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Imunofluorescência , Imuno-Histoquímica , Camundongos
5.
Cereb Cortex ; 18(4): 890-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17652465

RESUMO

Mice lacking functional presynaptic active zone protein Bassoon are characterized by an enlarged cerebral cortex and an altered cortical activation pattern. This morphological and functional phenotype is associated with defined metabolic distortions as detected by a metabonomic approach using high-field (14.1 T) high-resolution 1H-nuclear magnetic resonance spectroscopy (MRS) in conjunction with statistical pattern recognition. Within the cortex but not in the cerebellum, concentrations of N-acetyl aspartate, glutamine, and glutamate are significantly reduced, whereas the majority of all other detectable low molecular metabolites are unchanged. The reduction of the neuron-specific metabolite N-acetyl aspartate in the cortex coincides with a significant decrease in neuronal density in cortical layer V. Comparing the neuron with glia cell densities across the cortex reveals cortex layer-dependent alterations in the ratio between both cell types. Whereas the ratio shifts significantly toward neurons in the cortical input layers IV, the ratio is reversed in cortical layer V. Consequently, the previously observed altered neuronal activation pattern in the cortex is reflected not only in defined cytoarchitectural anomalies but also in metabolic disturbances in the glutamine-glutamate and N-acetyl aspartate metabolism.


Assuntos
Córtex Cerebral , Proteínas do Tecido Nervoso/genética , Ressonância Magnética Nuclear Biomolecular , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Mapeamento Encefálico , Cerebelo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Histocitoquímica , Masculino , Manganês/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Prótons
6.
Biophys J ; 94(4): 1483-96, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17933880

RESUMO

Neuronal synapses are highly specialized structures for communication between nerve cells. Knowledge about their molecular organization and dynamics is still incomplete. The large multidomain protein Bassoon plays a major role in scaffolding and organizing the cytomatrix at the active zone of neurotransmitter release in presynaptic boutons. Utilizing immunofluorescence techniques, we show that Bassoon is essential for corecruitment of its synaptic interaction partners, C-terminal binding protein 1/brefeldin A-dependent ADP-ribosylation substrate and CAZ-associated structural protein, into protein complexes upon heterologous expression in COS-7 cells. A combination of Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy in the time domain was adopted to investigate the potential for the association of these proteins in the same complexes. A direct physical association between Bassoon and CtBP1 could also be observed at synapses of living hippocampal neurons. Simultaneous analysis of fluorescence decays of the donor and the acceptor probes along with their decay-associated spectra allowed a clear discrimination of energy transfer.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Animais , Células COS , Chlorocebus aethiops , Terminações Pré-Sinápticas/ultraestrutura
7.
Neuron ; 37(5): 787-800, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12628169

RESUMO

Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were generated to establish the role of this protein in the assembly and function of active zones as sites of synaptic vesicle docking and fusion. Our data show that the loss of Bassoon causes a reduction in normal synaptic transmission, which can be attributed to the inactivation of a significant fraction of glutamatergic synapses. At these synapses, vesicles are clustered and docked in normal numbers but are unable to fuse. Phenotypically, the loss of Bassoon causes spontaneous epileptic seizures. These data show that Bassoon is not essential for synapse formation but plays an essential role in the regulated neurotransmitter release from a subset of glutamatergic synapses.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Inativação Gênica/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Técnicas In Vitro , Masculino , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Sinapses/ultraestrutura
8.
Invest Ophthalmol Vis Sci ; 47(1): 17-24, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16384939

RESUMO

PURPOSE: Mutations in the dystrophin-associated glycoprotein complex (DGC) cause various forms of muscular dystrophy. These diseases are characterized by progressive loss of skeletal muscle tissue and by dysfunctions in the central nervous system (CNS). The CNS deficits include an altered electroretinogram, caused by an impaired synaptic transmission between photoreceptors and their postsynaptic target cells in the outer plexiform layer (OPL). The DGC is concentrated in the OPL but its exact distribution is controversial. Therefore, the precise distribution of beta-dystroglycan, the central component of the DGC, within the OPL of the mature chick retina, was determined. METHODS: Double immunolabeling with antibodies against beta-dystroglycan and against Bassoon, a component of the presynaptic cytomatrix, concentrated at the insertion point of the synaptic ribbon into the active zone of the photoreceptor synapses, showed a nonoverlapping distribution of both proteins within individual rod and cone photoreceptor terminals. The three-dimensional distribution of the DGC within the photoreceptor terminals was determined by reconstruction of the beta-dystroglycan immunoreactivity from serial electron microscopic sections. RESULTS: We found that beta-dystroglycan was not directly associated with the ribbon synapse but instead concentrated perisynaptically in processes extending from the photoreceptors into the OPL. The processes displayed dystroglycan immunoreactivity primarily along their lateral sides and at their tips. Processes from bipolar or horizontal cells were not labeled. CONCLUSIONS: The perisynaptic concentration of beta-dystroglycan in photoreceptor terminals suggests a novel domain within photoreceptor terminals with functions in synaptic transmission.


Assuntos
Distroglicanas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Compartimento Celular/fisiologia , Galinhas , Técnica Indireta de Fluorescência para Anticorpo , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Bipolares da Retina/metabolismo , Células Horizontais da Retina/metabolismo
9.
Neuron ; 82(1): 181-94, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24698275

RESUMO

Voltage-dependent Ca(2+) channels (CaVs) represent the principal source of Ca(2+) ions that trigger evoked neurotransmitter release from presynaptic boutons. Ca(2+) influx is mediated mainly via CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels, which differ in their properties. Their relative contribution to synaptic transmission changes during development and tunes neurotransmission during synaptic plasticity. The mechanism of differential recruitment of CaV2.1 and CaV2.2 to release sites is largely unknown. Here, we show that the presynaptic scaffolding protein Bassoon localizes specifically CaV2.1 to active zones via molecular interaction with the RIM-binding proteins (RBPs). A genetic deletion of Bassoon or an acute interference with Bassoon-RBP interaction reduces synaptic abundance of CaV2.1, weakens P/Q-type Ca(2+) current-driven synaptic transmission, and results in higher relative contribution of neurotransmission dependent on CaV2.2. These data establish Bassoon as a major regulator of the molecular composition of the presynaptic neurotransmitter release sites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Canais de Cálcio Tipo N/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células COS , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Transformada , Chlorocebus aethiops , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Técnicas In Vitro , Camundongos Transgênicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Vesículas Sinápticas/efeitos dos fármacos , Fatores de Tempo , ômega-Conotoxina GVIA/farmacologia , Domínios de Homologia de src/fisiologia
10.
PLoS One ; 8(3): e58814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516560

RESUMO

The proper organization of the presynaptic cytomatrix at the active zone is essential for reliable neurotransmitter release from neurons. Despite of the virtual stability of this tightly interconnected proteinaceous network it becomes increasingly clear that regulated dynamic changes of its composition play an important role in the processes of synaptic plasticity. Bassoon, a core component of the presynaptic cytomatrix, is a key player in structural organization and functional regulation of presynaptic release sites. It is one of the most highly phosphorylated synaptic proteins. Nevertheless, to date our knowledge about functions mediated by any one of the identified phosphorylation sites of Bassoon is sparse. In this study, we have identified an interaction of Bassoon with the small adaptor protein 14-3-3, which depends on phosphorylation of the 14-3-3 binding motif of Bassoon. In vitro phosphorylation assays indicate that phosphorylation of the critical Ser-2845 residue of Bassoon can be mediated by a member of the 90-kDa ribosomal S6 protein kinase family. Elimination of Ser-2845 from the 14-3-3 binding motif results in a significant decrease of Bassoon's molecular exchange rates at synapses of living rat neurons. We propose that the phosphorylation-induced 14-3-3 binding to Bassoon modulates its anchoring to the presynaptic cytomatrix. This regulation mechanism might participate in molecular and structural presynaptic remodeling during synaptic plasticity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Sinapses/fisiologia
11.
PLoS One ; 7(6): e39710, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745816

RESUMO

C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons.


Assuntos
Oxirredutases do Álcool/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Roedores/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Proteínas Correpressoras , Feminino , Hipocampo/citologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosfoproteínas/metabolismo
12.
J Comp Neurol ; 518(7): 1008-29, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20127803

RESUMO

Bassoon and Piccolo contribute to the cytomatrix of active zones (AZ), the sites of neurotransmitter release in nerve terminals. Here, we examined the 3D localization of Bassoon and Piccolo in the rat calyx of Held between postnatal days 9 and 21, the period of hearing onset characterized by pronounced structural and functional changes. Bassoon and Piccolo were identified by immunohistochemistry (IHC) on slices of the brainstem harboring calyces labeled with membrane-anchored green fluorescent protein (mGFP). By using confocal microscopy and 3D reconstructions, we examined the distribution of Bassoon and Piccolo in calyces delineated by mGFP. This allowed us to discriminate calyceal IHC signals from noncalyceal signals located in the spaces between the calyceal stalks, which could mimic a calyx-like distribution. We found that both proteins were arranged in clusters resembling the size of AZs. These clusters were located along the presynaptic membrane facing the principal cell, close to or overlapping with synaptic vesicle (SV) clusters. Only about 60% of Bassoon and Piccolo clusters overlapped, whereas the remaining clusters contained predominantly Bassoon or Piccolo, suggesting differential targeting of these proteins within a single nerve terminal and potentially heterogeneous AZs functional properties. The total number of Bassoon and Piccolo clusters, which may approximate the number of AZs, was 405 +/- 35 at P9 and 601 +/- 45 at P21 (mean +/- SEM, n = 12). Normalized to calyx volume at P9 and P21, the density of clusters was similar, suggesting that the absolute number of clusters, not density, may contribute to the functional maturation associated with hearing onset.


Assuntos
Vias Auditivas/crescimento & desenvolvimento , Proteínas do Citoesqueleto/metabolismo , Audição/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Animais , Vias Auditivas/citologia , Vias Auditivas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Neurônios/fisiologia , Ponte/citologia , Ponte/crescimento & desenvolvimento , Ponte/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/metabolismo , Fatores de Tempo
13.
J Cell Biol ; 185(2): 341-55, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19380881

RESUMO

Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Dineínas/genética , Dineínas/metabolismo , Humanos , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Isoformas de Proteínas/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Cereb Cortex ; 17(1): 28-36, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16452644

RESUMO

Manganese-enhanced magnetic resonance imaging (ME-MRI) was used to analyze the brain architecture in mice lacking the functional presynaptic active zone protein Bassoon. Anatomical characterization revealed a significant increase in the total brain volume in Bassoon mutants as compared with wild-type mice, which is mainly caused by changes in cortex and hippocampus volume. The measured enlargement in cortical volume coincides with an altered Mn2+ distribution within cortical layers as visualized by T1-weighted magnetic resonance imaging. Two days after manganese application, the cortex of Bassoon mutant mice appeared more laminated in ME-MRI, with an enhanced accumulation of manganese in deep, central, and superficial cortical cell layers. Whereas morphologically the cortical lamination is not affected by the absence of a functional Bassoon, an altered basal activation pattern was found in the cortex of the mutant mice both by metabolic labeling with [14C]-2-deoxyglucose and histochemical detection of the potassium analogue thallium uptake. Consequently, the results indicate that the absence of the functional presynaptic protein Bassoon causes disturbance in the formation of normal basal cortical activation patterns and thereby in the functional cortical architecture. Furthermore, this study shows that ME-MRI can become a valuable tool for a structural characterization of genetically modified mice.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética , Manganês , Proteínas do Tecido Nervoso/genética , Animais , Antimetabólitos , Canais de Cálcio Tipo L/metabolismo , Proteínas de Transporte/metabolismo , Cátions Bivalentes/metabolismo , Córtex Cerebral/metabolismo , Meios de Contraste , Interpretação Estatística de Dados , Desoxiglucose , Manganês/farmacocinética , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Tálio , Transferrina/metabolismo
15.
Am J Pathol ; 170(4): 1314-24, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17392170

RESUMO

In patients affected by Creutzfeldt-Jakob disease and in animals affected by transmissible spongiform encephalopathies, retinal functions are altered, and major spongiform changes are observed in the outer plexiform layer where photoreceptors have their synaptic terminals. In the present study, the prion protein PrP(c) was found to form aggregates in rod photoreceptor terminals from both rat and human retina, whereas no labeling was observed in cone photoreceptors. Discrete staining was also detected in the inner plexiform layer where the prion protein was located at human amacrine cell synapses. In mixed porcine retinal cell cultures, the PrP106-126 prion peptide triggered a 61% rod photoreceptor cell loss by apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling, whereas cone photoreceptors were not affected. Amacrine cells were also reduced by 47% in contrast to ganglion cells. Although this cell loss was associated with a 5.5-fold increase in microglial cells, the strict correlation between the PrP(c) prion protein expression and the peptide toxicity suggested that this toxicity did not rely on the release of a toxic compound by glial cells. These results provide new insights into the retinal pathophysiology of prion diseases and illustrate advantages of adult retinal cell cultures to investigate prion pathogenic mechanisms.


Assuntos
Fragmentos de Peptídeos/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Príons/farmacologia , Células Amácrinas/citologia , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia Confocal , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Proteínas PrPC/metabolismo , Príons/química , Príons/metabolismo , Ratos , Ratos Long-Evans , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Suínos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
16.
J Biol Chem ; 281(9): 6038-47, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16373352

RESUMO

Neurotransmitter release from presynaptic nerve terminals is restricted to specialized areas of the plasma membrane, so-called active zones. Active zones are characterized by a network of cytoplasmic scaffolding proteins involved in active zone generation and synaptic transmission. To analyze the modes of biogenesis of this cytomatrix, we asked how Bassoon and Piccolo, two prototypic active zone cytomatrix molecules, are delivered to nascent synapses. Although these proteins may be transported via vesicles, little is known about the importance of a vesicular pathway and about molecular determinants of cytomatrix molecule trafficking. We found that Bassoon and Piccolo co-localize with markers of the trans-Golgi network in cultured neurons. Impairing vesicle exit from the Golgi complex, either using brefeldin A, recombinant proteins, or a low temperature block, prevented transport of Bassoon out of the soma. Deleting a newly identified Golgi-binding region of Bassoon impaired subcellular targeting of recombinant Bassoon. Overexpressing this region to specifically block Golgi binding of the endogenous protein reduced the concentration of Bassoon at synapses. These results suggest that, during the period of bulk synaptogenesis, a primordial cytomatrix assembles in a trans-Golgi compartment. They further indicate that transport via Golgi-derived vesicles is essential for delivery of cytomatrix proteins to the synapse. Paradigmatically this establishes Golgi transit as an obligatory step for subcellular trafficking of distinct cytoplasmic scaffolding proteins.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Rede trans-Golgi/fisiologia , Animais , Biomarcadores/metabolismo , Brefeldina A/farmacologia , Células Cultivadas , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/genética , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/fisiologia , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sinapses/ultraestrutura , Rede trans-Golgi/ultraestrutura
17.
Mol Cell Neurosci ; 23(2): 279-91, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12812759

RESUMO

Exocytosis of neurotransmitter from synaptic vesicles is restricted to specialized sites of the presynaptic plasma membrane called active zones. A complex cytomatrix of proteins exclusively assembled at active zones, the CAZ, is thought to form a molecular scaffold that organizes neurotransmitter release sites. Here, we have analyzed synaptic targeting and cytomatrix association of Bassoon, a major scaffolding protein of the CAZ. By combining immunocytochemistry and transfection of cultured hippocampal neurons, we show that the central portion of Bassoon is crucially involved in synaptic targeting and CAZ association. An N-terminal region harbors a distinct capacity for N-myristoylation-dependent targeting to synaptic vesicle clusters, but is not incorporated into the CAZ. Our data provide the first experimental evidence for the existence of distinct functional regions in Bassoon and suggest that a centrally located CAZ targeting function may be complemented by an N-terminal capacity for targeting to membrane-bounded synaptic organelles.


Assuntos
Citoesqueleto/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Citoesqueleto/ultraestrutura , Feto , Hipocampo/citologia , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética , Organelas/genética , Organelas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Ratos , Proteínas Recombinantes de Fusão , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Transfecção
18.
J Biol Chem ; 278(8): 6291-300, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12473661

RESUMO

The cytoskeletal matrix assembled at active zones (CAZ) is implicated in defining neurotransmitter release sites. However, little is known about the molecular mechanisms by which the CAZ is organized. Here we report a novel interaction between Piccolo, a core component of the CAZ, and GIT proteins, multidomain signaling integrators with GTPase-activating protein activity for ADP-ribosylation factor small GTPases. A small region (approximately 150 amino acid residues) in Piccolo, which is not conserved in the closely related CAZ protein Bassoon, mediates a direct interaction with the Spa2 homology domain (SHD) domain of GIT1. Piccolo and GIT1 colocalize at synaptic sites in cultured neurons. In brain, Piccolo forms a complex with GIT1 and various GIT-associated proteins, including betaPIX, focal adhesion kinase, liprin-alpha, and paxillin. Point mutations in the SHD of GIT1 differentially interfere with the association of GIT1 with Piccolo, betaPIX, and focal adhesion kinase, suggesting that these proteins bind to the SHD by different mechanisms. Intriguingly, GIT proteins form homo- and heteromultimers through their C-terminal G-protein-coupled receptor kinase-binding domain in a tail-to-tail fashion. This multimerization enables GIT1 to simultaneously interact with multiple SHD-binding proteins including Piccolo and betaPIX. These results suggest that, through their multimerization and interaction with Piccolo, the GIT family proteins are involved in the organization of the CAZ.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neuropeptídeos/metabolismo , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Galinhas , Clonagem Molecular , Proteínas do Citoesqueleto/química , Proteínas Ativadoras de GTPase/química , Glutationa Transferase/metabolismo , Humanos , Cinética , Substâncias Macromoleculares , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeos/química , Reação em Cadeia da Polimerase , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sinapses/fisiologia , Sinapses/ultraestrutura , Transfecção , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA