Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400231

RESUMO

This study proposes and presents a new central office (CO) for the optical metro access network (OMAN) with an affordable and distinctive switching system. The CO's foundation is built upon a novel optical multicarrier (OMC) generation technique. This technique provides numerous frequency carriers that are characterized by a high tone-to-noise ratio (TNR) of 40 dB and minimal amplitude excursions. The purpose is to accommodate multiple users at the optical network unit side in the optical metropolitan area network (OMAN). The OMC generation is achieved through a cascaded configuration involving a single phase and two Mach Zehnder modulators without incorporating optical or electrical amplifiers or filters. The proposed OMC is installed in the CO of the OMAN to support the 1.2 Tbps downlink and 600 Gbps uplink transmission, with practical bit error rate (BER) ranges from 10-3 to 10-13 for the downlink and 10-6 to 10-14 for the uplink transmission. Furthermore, in the OMAN's context, optical fiber failure is a main issue. Therefore, we have proposed a possible solution for ensuring uninterrupted communication without any disturbance in various scenarios of main optical fiber failures. This demonstrates how this novel CO can rapidly recover transmission failures through robust switching a and centralized OLT. The proposed system is intended to provide users with a reliable and affordable service while maintaining high-quality transmission rates.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420791

RESUMO

As criminal activity increasingly relies on digital devices, the field of digital forensics plays a vital role in identifying and investigating criminals. In this paper, we addressed the problem of anomaly detection in digital forensics data. Our objective was to propose an effective approach for identifying suspicious patterns and activities that could indicate criminal behavior. To achieve this, we introduce a novel method called the Novel Support Vector Neural Network (NSVNN). We evaluated the performance of the NSVNN by conducting experiments on a real-world dataset of digital forensics data. The dataset consisted of various features related to network activity, system logs, and file metadata. Through our experiments, we compared the NSVNN with several existing anomaly detection algorithms, including Support Vector Machines (SVM) and neural networks. We measured and analyzed the performance of each algorithm in terms of the accuracy, precision, recall, and F1-score. Furthermore, we provide insights into the specific features that contribute significantly to the detection of anomalies. Our results demonstrated that the NSVNN method outperformed the existing algorithms in terms of anomaly detection accuracy. We also highlight the interpretability of the NSVNN model by analyzing the feature importance and providing insights into the decision-making process. Overall, our research contributes to the field of digital forensics by proposing a novel approach, the NSVNN, for anomaly detection. We emphasize the importance of both performance evaluation and model interpretability in this context, providing practical insights for identifying criminal behavior in digital forensics investigations.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Algoritmos
3.
J Neurosci Methods ; : 110210, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968974

RESUMO

Stroke is a severe illness, that requires early stroke detection and intervention, as this would help prevent the worsening of the condition. The research is done to solve stroke prediction problem, which may be divided into a number of sub-problems such as an individual's predisposition to develop stroke. To attain this objective, a multiturn dataset consisting of various health features, such as age, gender, hypertension, and glucose levels, takes a central role. A multiple approach was put forward concentrating on integrating the machine learning techniques, such as Logistic Regression, Naive Bayes, K-Nearest Neighbors, and Support Vector Machine (SV), together to develop an ensemble machine called Neuro-Health Guardian. The hypothesis "Neuro-Health Guardian Model" integrates these algorithms into one, purported to make stroke prediction more accurate. The topic dives into each instance of preparation of data for analysis, data visualization techniques, selection of the right model, training, testing, ensembling, evaluation, and prediction. The models are validated with error rate accounted from their accuracy, precision, recall, F1 score, and finally confusion matrices for a look. The study's result is showing that the ensemble model that combines the multiple algorithms has the edge over them and this is evidently by the fact that it can predict stroke rises. Additionally, accuracy, precision, recall, and F1 scores are measured in all models and the comparison is done to provide a clear comparison of the models' performance. In short, the article presented the formation of the ongoing stroke prediction that revealed the ensemble model as a good anticipation. Precise stroke predisposition forecasting can assist in early intervention thereby preventing stroke-related deaths, and limiting disability burden by stroke. The conclusions that have come out of this study offer a great action item for the development of predictive models related to stroke prevention and treatment.

4.
Comput Intell Neurosci ; 2022: 1133819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093508

RESUMO

Subarachnoid hemorrhage (SAH) is one of the serious strokes of cerebrovascular accidents. There is an approx. 15% probability of spontaneous subarachnoid hemorrhage in all acute cerebrovascular accidents (CVAs). Most spontaneous subarachnoid hemorrhages are caused by ruptures of intracranial aneurysms, accounting for about 85% of all occurrences. About 15% of acute cerebrovascular disorders are caused by spontaneous subarachnoid hemorrhage. This illness is mostly caused by brain/spinal arteriovenous malformations, extracranial aneurysms, and hypertension. Computed tomography (CT) scan is the common diagnostic modality to evaluate SAH, but it is very difficult to identify the abnormality. Thus, automatic detection of SAH is required to recognize the early signs and symptoms of SAH and to provide appropriate therapeutic intervention and treatment. In this article, the gray-level cooccurrence matrix (GLCM) is used to extract useful features from CT images. Then, the New Association Classification Frequent Pattern (NCFP-growth) algorithm is applied, which is based on association rules. Then, it is compared with FP-growth methods with association rules and FP-growth methods without association rules. The experimental results indicate that the suggested approach outperforms in terms of classification accuracy. The proposed approach equates to a 95.2% accuracy rate compared to the conventional data mining algorithm.


Assuntos
Hemorragia Subaracnóidea , Algoritmos , Encéfalo , Mineração de Dados , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/etiologia , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA