Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514557

RESUMO

The use of technology in agriculture has been gaining significant attention recently. By employing advanced tools and automation and leveraging the latest advancements in the Internet of Things (IoT) and artificial intelligence (AI), the agricultural sector is witnessing improvements in its crop yields and overall efficiency. This paper presents the design and performance analysis of a machine learning (ML) model for agricultural applications involving acoustic sensing. This model is integrated into an efficient Artificial Intelligence of Things (AIoT) platform tailored for agriculture. The model is then used in the design of a communication network architecture and for determining the distribution of the computing load between edge devices and the cloud. The study focuses on the design, analysis, and optimization of AI deployment for reliable classification models in agricultural applications. Both the architectural level and hardware implementation are taken into consideration when designing the radio module and computing unit. Additionally, the study encompasses the design and performance analysis of the hardware used to implement the sensor node specifically developed for sound classification in agricultural applications. The novelty of this work lies in the optimization of the integrated sensor node, which combines the proposed ML model and wireless network, resulting in an agricultural-specific AIoT platform. This co-design enables significant improvements in the performance and efficiency for acoustic and ambient sensing applications.

2.
Nat Neurosci ; 26(3): 517-527, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804647

RESUMO

Advances in technologies that can record and stimulate deep brain activity in humans have led to impactful discoveries within the field of neuroscience and contributed to the development of novel therapies for neurological and psychiatric disorders. Further progress, however, has been hindered by device limitations in that recording of single-neuron activity during freely moving behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, currently approved for human use, have limited stimulation programmability and restricted full-duplex bidirectional capability. In this study, we developed a wearable bidirectional closed-loop neuromodulation system (Neuro-stack) and used it to record single-neuron and local field potential activity during stationary and ambulatory behavior in humans. Together with a highly flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to investigate the neurophysiological basis of disease, develop improved responsive neuromodulation therapies, explore brain function during naturalistic behaviors in humans and, consequently, bridge decades of neuroscientific findings across species.


Assuntos
Estimulação Encefálica Profunda , Transtornos Mentais , Dispositivos Eletrônicos Vestíveis , Humanos , Transtornos Mentais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA