Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20389, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437278

RESUMO

Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Retroalimentação , Recifes de Corais , Biodiversidade , Água
2.
Sci Rep ; 7(1): 12251, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947777

RESUMO

Declines in the abundance of long-lived and habitat-forming species on continental shelves have attracted particular attention given their importance to ecosystem structure and function of marine habitats. The study of undisturbed habitats defined as "pristine areas" is essential in creating a frame of reference for natural habitats free of human interference. Gorgonian species are one of the key structure-forming taxa in benthic communities on the Antarctic continental shelf. Current knowledge of the diversity, distribution and demography of this group is relatively limited in Antarctica. To overcome this lack of information we present original data on pristine and remote populations of gorgonians from the Weddell Sea, some of which display the largest colony sizes ever recorded in Antarctica. We assessed the distribution patterns of seven gorgonian species, a morphogroup and a family in front of the Filchner Ronne Ice Shelf (Weddell Sea) by means of quantitative analysis of video transects. Analysis of these videos showed a total of 3140 colonies of gorgonians with the highest abundance in the southern section and a significantly clumped distribution. This study contributes to the general knowledge of pristine areas of the continental shelf and identifies the eastern Weddell Sea as a hotspot for habitat-forming species.


Assuntos
Distribuição Animal , Antozoários/crescimento & desenvolvimento , Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Animais , Regiões Antárticas , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA