Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(8): 235, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850338

RESUMO

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.


Assuntos
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacologia , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Indústria Alimentícia , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia
2.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008714

RESUMO

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Assuntos
Proteínas de Escherichia coli , Mucosite , Probióticos , Camundongos , Humanos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamação , Probióticos/uso terapêutico
3.
World J Microbiol Biotechnol ; 39(9): 235, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37365380

RESUMO

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.


Assuntos
Antineoplásicos , Lactobacillus delbrueckii , Mucosite , Probióticos , Simbióticos , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Probióticos/farmacologia , Mucosa Intestinal , Prebióticos/efeitos adversos , Fluoruracila/efeitos adversos , Antineoplásicos/farmacologia
4.
Cell Biochem Funct ; 40(2): 163-174, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043435

RESUMO

HIV-1-associated neurocognitive disorders (HAND) are a major concern in HIV-infected individuals despite the currently available antiretroviral therapy regime. Impaired M1 pro-inflammatory microglial activation is considered one of the hallmark features of HAND neuropathogenesis, and it has been suggested that circulant HIV-1 transactivator protein (Tat) can play a critical role in this process. At the same time, endoplasmatic reticulum (ER) stress has also been implicated in neurodegenerative conditions resulting from the accumulation of misfolded proteins and subsequent unfolded protein response (UPR) deflagration. Here, we demonstrate that pharmacological inhibition of UPR-related protein kinase R-like endoplasmic reticulum kinase (PERK) can attenuate HIV-1 Tat-induced M1 inflammatory state in microglia in vitro. Our initial experiments demonstrate that the bystander stimulus of recombinant Tat on BV-2 microglial cells result in the coupled overexpression of central UPR markers and pro-inflammatory mediators such as iNOS, surface CD16/32 and secreted tumour necrosis factor-α (TNF-α), IL-6, monocyte chemoattractant protein (MCP)-1 and NO. We show that blocking PERK-eIF2-α-ATF4 signalling using the PERK inhibitor GSK2606414 leads to reduced inflammatory response in M1-like BV-2 cells activated by recombinant Tat. Taken together, these findings suggest that PERK targeting may provide a therapeutic intervention to mitigate against lasting neuroinflammation and neuronal loss in of HAND.


Assuntos
Microglia , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Microglia/metabolismo , Fenótipo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Probiotics Antimicrob Proteins ; 16(2): 352-366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746838

RESUMO

Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for  example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.


Assuntos
Doenças Autoimunes , Lactococcus lactis , Humanos , Lactococcus lactis/metabolismo , Interleucinas/metabolismo , Citocinas/metabolismo , Doenças Autoimunes/tratamento farmacológico , Anti-Inflamatórios
6.
Probiotics Antimicrob Proteins ; 16(5): 1687-1723, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38539008

RESUMO

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.


Assuntos
Probióticos , Probióticos/uso terapêutico , Humanos , Animais
7.
Int J Biol Macromol ; 277(Pt 2): 134216, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069058

RESUMO

Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1ß, TGFß, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1ß levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.


Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Microbioma Gastrointestinal/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Bactérias/farmacologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Probióticos/farmacologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/patologia , Colo/microbiologia , Colo/metabolismo , Masculino
8.
Food Res Int ; 186: 114322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729712

RESUMO

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Assuntos
Colite , Produtos Fermentados do Leite , Sulfato de Dextrana , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Lactobacillus delbrueckii/metabolismo , Produtos Fermentados do Leite/microbiologia , Camundongos , Probióticos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Inflamação , Colo/microbiologia , Colo/metabolismo , Lactobacillus
9.
Front Microbiol ; 15: 1309160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680913

RESUMO

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

10.
Front Microbiol ; 14: 1157544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138633

RESUMO

Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.

11.
Biochim Biophys Acta Gen Subj ; 1866(11): 130219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35926731

RESUMO

HIV-1 transactivator (Tat) protein plays a critical role in neurological disorders resulting from viral infection, commonly known as HIV-1-associated neurocognitive disorders (HAND). Previous studies have shown that circulant Tat induces M1 microglial activation, one of the hallmark features of HAND, and this is coupled with ER stress and subsequent Unfolded Protein Response (UPR) triggering. Here, we demonstrate that bystander stimuli of Tat in microglial cells result in the simultaneous overexpression of IRE1-related markers and production of M1-typed proinflammatory mediators. We also show that blocking IRE1/XBP-1 signaling using 4µ8C diminishes such inflammatory response. These findings reinforce a role for the IRE1/XBP-1 pathway in HIV-1 Tat neuropathology and suggest that targeting IRE1 RNase activity using 4µ8C or analogue compounds may provide a therapeutic intervention to mitigate against neuroinflammation in HAND.


Assuntos
HIV-1 , Endorribonucleases , Microglia , Proteínas Serina-Treonina Quinases , Ribonucleases
12.
Microorganisms ; 10(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889136

RESUMO

Intestinal mucositis is a commonly reported side effect in oncology practice. Probiotics are considered an excellent alternative therapeutic approach to this debilitating condition; however, there are safety questions regarding the viable consumption of probiotics in clinical practice due to the risks of systemic infections, especially in immune-compromised patients. The use of heat-killed or cell-free supernatants derived from probiotic strains has been evaluated to minimize these adverse effects. Thus, this work evaluated the anti-inflammatory properties of paraprobiotics (heat-killed) and postbiotics (cell-free supernatant) of the probiotic Lactobacillus delbrueckii CIDCA 133 strain in a mouse model of 5-Fluorouracil drug-induced mucositis. Administration of paraprobiotics and postbiotics reduced the neutrophil cells infiltrating into the small intestinal mucosa and ameliorated the intestinal epithelium architecture damaged by 5-FU. These ameliorative effects were associated with a downregulation of inflammatory markers (Tlr2, Nfkb1, Il12, Il17a, Il1b, Tnf), and upregulation of immunoregulatory Il10 cytokine and the epithelial barrier markers Ocln, Cldn1, 2, 5, Hp and Muc2. Thus, heat-killed L. delbrueckii CIDCA 133 and supernatants derived from this strain were shown to be effective in reducing 5-FU-induced inflammatory damage, demonstrating them to be an alternative approach to the problems arising from the use of live beneficial microorganisms in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA