Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Histol Histopathol ; 39(7): 867-876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529720

RESUMO

INTRODUCTION: Lung cancer is a major cause of cancer-related death worldwide and effective therapies, besides surgery, are available only for a small proportion of patients. Since cellular respiration is known to be broadly altered in malignant tumors, the cellular processes of respiration can be a potential therapeutic target. One important element of cellular respiration is creatine and its transport by the creatine transporter SLC6A8. Here we describe the expression of SLC6A8 at the RNA and protein level, epigenetic modifications as well as survival analysis in NSCLC tissues and matched controls. MATERIALS AND METHODS: We analyzed epigenetic modifications of the SLC68A gene in 32 patients, of which 18 were additionally analyzed by transcriptome analysis. The expression of SLC6A8 at the protein level was assessed by immunohistochemistry using an independent cohort and correlated with clinicopathological data including survival. Kaplan-Meier analysis was performed to analyze the possible effects of the transcriptional levels of SLC6A8 in another separate cohort (n=1925). RESULTS: SLC6A8 loci are epigenetically modified in NSCLC compared with tumor-free controls. SLC6A8 is upregulated in NSCLC at the RNA and protein level. High mRNA expression of SLC6A8 was associated with an overall poor prognosis in lung adenocarcinoma patients and displayed the strongest adverse prognostic effect in male smokers with adenocarcinomas. Results of transcriptome analysis were partially confirmed at the protein level. CONCLUSIONS: Our results suggest an important role of creatine and its transport via SLC6A8 in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Epigênese Genética , Neoplasias Pulmonares , Regulação para Cima , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Prognóstico , Estimativa de Kaplan-Meier , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Adulto , Proteínas de Membrana Transportadoras
2.
J Craniomaxillofac Surg ; 52(6): 748-754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582670

RESUMO

Aim of this study was to demonstrate the influence of different analytical procedures and techniques on the resulting miRNA expression profile in healthy control subjects and tumor patients using the oral squamous cell carcinoma (OSCC) model and to demonstrate the technical and biological reproducibility. Body fluids such as saliva are suitable for non-invasive miRNA analysis because ubiquitously circulating miRNA can be found in them. It was technically possible to distinguish between healthy and diseased samples based on the miRNA expression profile found. Regardless of the methodology used, good technical reproducibility of the results seems to be achievable. On the other hand, biological reproducibility was inadequate, which is why prompt sampling and sequencing is recommended. The data indicate that malignant lesions can be detected using miRNA signatures extracted from saliva. This could stimulate further research to establish standardized protocols and kits for sample collection, miRNA extraction, sequencing and interpretation of results.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Bucais , Saliva , Humanos , Saliva/química , MicroRNAs/análise , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/genética , Reprodutibilidade dos Testes , Feminino , Masculino , Pessoa de Meia-Idade
3.
Heliyon ; 10(1): e23688, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192829

RESUMO

Brachyolmia is a heterogeneous group of developmental disorders characterized by a short trunk, short stature, scoliosis, and generalized platyspondyly without significant deformities in the long bones. DASS (Dental Abnormalities and Short Stature), caused by alterations in the LTBP3 gene, was previously considered as a subtype of brachyolmia. The present study investigated three unrelated consanguineous families (A, B, C) with Brachyolmia and DASS from Egypt and Pakistan. In our Egyptian patients, we also observed hearing impairment. Exome sequencing was performed to determine the genetic causes of the diverse clinical conditions in the patients. Exome sequencing identified a novel homozygous splice acceptor site variant (LTBP3:c.3629-1G > T; p. ?) responsible for DASS phenotypes and a known homozygous missense variant (CABP2: c.590T > C; p.Ile197Thr) causing hearing impairment in the Egyptian patients. In addition, two previously reported homozygous frameshift variants (LTBP3:c.132delG; p.Pro45Argfs*25) and (LTBP3:c.2216delG; p.Gly739Alafs*7) were identified in Pakistani patients. This study emphasizes the vital role of LTBP3 in the axial skeleton and tooth morphogenesis and expands the mutational spectrum of LTBP3. We are reporting LTBP3 variants in seven patients of three families, majorly causing brachyolmia with dental and cardiac anomalies. Skeletal assessment documented short webbed neck, broad chest, evidences of mild long bones involvement, short distal phalanges, pes planus and osteopenic bone texture as additional associated findings expanding the clinical phenotype of DASS. The current study reveals that the hearing impairment phenotype in Egyptian patients of family A has a separate transmission mechanism independent of LTBP3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA