Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(13): 8014-8129, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38842266

RESUMO

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Front Oncol ; 14: 1420337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022584

RESUMO

Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.

3.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854130

RESUMO

Purpose: Inhibiting HMG-CoA reductase with simvastatin prevents breast cancer metastases in preclinical models and radiosensitizes monolayer and stem-like IBC cell lines in vitro . Given the extensive use of simvastatin worldwide and its expected penetration into the brain, we examined whether regulating cholesterol with simvastatin affected IBC3 HER2+ brain metastases. Methods and Materials: Breast cancer cell lines KPL4 and MDA-IBC3 were examined in vitro for DNA repair after radiation with or without statin treatment. Brain metastasis endpoints were examined in the MDA-IBC3 brain metastasis model after ex vivo exposure to lipoproteins and after tail vein injections with and without whole-brain radiotherapy (WBR) and oral statin exposure. Results: Ex vivo preculture of MDA-IBC3 cells with very low-density lipoprotein (vLDL) enhanced the growth of colonized lesions in the brain in vivo compared with control or high-density lipoprotein (HDL), and concurrent oral simvastatin/ WBR reduced the incidence of micrometastatic lesions evaluated 10 days after WBR. However, statin, with or without WBR, did not reduce the incidence, burden, or number of macrometastatic brain lesions evaluated 5 weeks after WBR. Conclusions: Although a role for cholesterol biosynthesis is demonstrated in DNA repair and response to whole brain radiation in this model, durable in vivo efficacy of concurrent whole brain irradiation and oral statin was not demonstrated.

4.
Int J Part Ther ; 11: 100019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38757077

RESUMO

Purpose: Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods: The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results: Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion: PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA