Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175992

RESUMO

Autophagy is a cellular catabolic process that degrades and recycles cellular materials. Autophagy is considered to be beneficial to the cell and organism by preventing the accumulation of toxic protein aggregates, removing damaged organelles, and providing bioenergetic substrates that are necessary for survival. However, autophagy can also cause cell death depending on cellular contexts. Yet, little is known about the signaling pathways that differentially regulate the opposite outcomes of autophagy. We have previously reported that insulin withdrawal (IW) or corticosterone (CORT) induces autophagic cell death (ACD) in adult hippocampal neural stem (HCN) cells. On the other hand, metabolic stresses caused by 2-deoxy-D-glucose (2DG) and glucose-low (GL) induce autophagy without death in HCN cells. Rather, we found that 2DG-induced autophagy was cytoprotective. By comparing IW and CORT conditions with 2DG treatment, we revealed that ERK and JNK are involved with 2DG-induced protective autophagy, whereas GSK-3ß regulates death-inducing autophagy. These data suggest that cell death and survival-promoting autophagy undergo differential regulation with distinct signaling pathways in HCN cells.


Assuntos
Apoptose , Células-Tronco Neurais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neurais/metabolismo , Morte Celular , Transdução de Sinais , Autofagia , Insulina/metabolismo , Insulina Regular Humana , Hipocampo/metabolismo
2.
FASEB J ; 34(1): 161-179, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914609

RESUMO

Fas-apoptotic inhibitory molecule 2 (FAIM2) is a member of the transmembrane BAX inhibitor motif-containing (TMBIM) family. TMBIM family is comprised of six anti-apoptotic proteins that suppress cell death by regulating endoplasmic reticulum Ca2+ homeostasis. Recent studies have implicated two TMBIM proteins, GRINA and BAX Inhibitor-1, in mediating cytoprotection via autophagy. However, whether FAIM2 plays a role in autophagy has been unknown. Here we show that FAIM2 localizes to the lysosomes at basal state and facilitates autophagy through interaction with microtubule-associated protein 1 light chain 3 proteins in human neuroblastoma SH-SY5Y cells. FAIM2 overexpression increased autophagy flux, while autophagy flux was impaired in shRNA-mediated knockdown (shFAIM2) cells, and the impairment was more evident in the presence of rapamycin. In shFAIM2 cells, autophagosome maturation through fusion with lysosomes was impaired, leading to accumulation of autophagosomes. A functional LC3-interacting region motif within FAIM2 was essential for the interaction with LC3 and rescue of autophagy flux in shFAIM2 cells while LC3-binding property of FAIM2 was dispensable for the anti-apoptotic function in response to Fas receptor-mediated apoptosis. Suppression of autophagosome maturation was also observed in a null mutant of Caenorhabditis elegans lacking xbx-6, the ortholog of FAIM2. Our study suggests that FAIM2 is a novel regulator of autophagy mediating autophagosome maturation through the interaction with LC3.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/fisiologia , Lisossomos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Motivos de Aminoácidos , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Imunossupressores/farmacologia , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Plasmídeos , Transporte Proteico , Sirolimo/farmacologia
3.
Int J Mol Sci ; 17(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490539

RESUMO

In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5'-flanking region showed that the region between -320 and -240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at -262 to -256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells.


Assuntos
Neoplasias Encefálicas/genética , Emodina/análogos & derivados , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Sialiltransferases/genética , Regulação para Cima/efeitos dos fármacos , Região 5'-Flanqueadora/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Emodina/química , Emodina/isolamento & purificação , Emodina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neuroblastoma/enzimologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Deleção de Sequência , Sialiltransferases/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Regulação para Cima/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 46(1): 65-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225218

RESUMO

In the present study, we firstly found that cordycepin elevated the gene expression of the human GD3 synthase (hST8Sia I) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the upregulation of hST8Sia I gene expression in cordycepin-treated SK-N-BE(2)-C cells, functional characterization of the promoter region of the hST8Sia I gene was performed. Analysis of promoter activity using varying lengths of 5'-flanking region showed a dramatic increase by cordycepin in the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1, and NF-κB. Site-directed mutagenesis for these binding sites and chromatin immunoprecipitation assay revealed that the NF-κB binding site at -731 to -722 is essential for the cordycepin-induced expression of the hST8Sia I in SK-N-BE(2)-C cells. Moreover, the hST8Sia I expression induced by cordycepin was significantly repressed by pyrrolidinedithiocarbamate, an inhibitor of NF-κB. These results suggested that cordycepin induces upregulation of hST8Sia I gene expression through NF-κB activation in SK-N-BE(2)-C cells.


Assuntos
Desoxiadenosinas/farmacologia , Sialiltransferases/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Neuroblastoma/enzimologia , Regiões Promotoras Genéticas , Ativação Transcricional , Regulação para Cima
5.
Indian J Biochem Biophys ; 50(6): 485-91, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24772972

RESUMO

Triptolide, a diterpene derived from Tripterygium wilfordii Hook f., a Chinese medicinal herb, has been reported to inhibit cell proliferation and induce apoptosis in various human cancer cells, but its anticancer effects on human osteosarcoma cells have not yet been elucidated. In this study, we investigated whether triptolide induces apoptosis in human osteosarcoma cells and the underlying molecular mechanisms. We firstly demonstrated that triptolide inhibited cell growth and induced apoptosis in U2OS cells. Western blot analysis showed that the levels of procaspase-8, -9, Bcl-2, Bid and mitochondrial cytochrome c were downregulated in triptolide-treated U2OS cells, whereas the levels of Fas, FasL, Bax, cytosolic cytochrome c, cleaved caspase-3 and cleaved PARP were upregulated. These results suggest that triptolide induces apoptosis in U2OS cells by activating both death receptor and mitochondrial apoptotic pathways.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Osteossarcoma/patologia , Fenantrenos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise/efeitos dos fármacos
6.
Nat Commun ; 13(1): 1972, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418126

RESUMO

Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα.


Assuntos
Repressão Epigenética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Presenilina-2/genética , Animais , Ritmo Circadiano/fisiologia , Imunidade , Camundongos , Mutação , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
7.
Exp Mol Med ; 53(3): 369-383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33654220

RESUMO

Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells. Here, we report that following insulin withdrawal, GSK3B directly interacted with and activated ULK1 via phosphorylation of S405 and S415 within the GABARAP-interacting region. Phosphorylation of these residues facilitated the interaction of ULK1 with MAP1LC3B and GABARAPL1, while phosphorylation-defective mutants of ULK1 failed to do so and could not induce autophagy flux. Furthermore, high phosphorylation levels of ULK1 at S405 and S415 were observed in human pancreatic cancer cell lines, all of which are known to exhibit high levels of autophagy. Our results reveal the importance of GSK3B-mediated phosphorylation for ULK1 regulation and autophagy induction and potentially for tumorigenesis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/patologia , Células-Tronco Neurais/patologia , Processamento de Proteína Pós-Traducional , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Glicogênio Sintase Quinase 3 beta/genética , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
8.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978164

RESUMO

There has been a great deal of interest in the development of technologies for actively manipulating neural networks in vitro, providing natural but simplified environments in a highly reproducible manner in which to study brain function and related diseases. Platforms for these in vitro neural networks require precise and selective neural connections at the target location, with minimal external influences, and measurement of neural activity to determine how neurons communicate. Here, we report a neuron-loaded microrobot for selective connection of neural networks via precise delivery to a gap between two neural clusters by an external magnetic field. In addition, the extracellular action potential was propagated from one cluster to the other through the neurons on the microrobot. The proposed technique shows the potential for use in experiments to understand how neurons communicate in the neural network by actively connecting neural clusters.

9.
Autophagy ; 16(9): 1598-1617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818185

RESUMO

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of CASP9 decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In CASP9 knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of CASP9 caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added H2O2 in the CASP9 KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not H2O2 rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation. ABBREVIATIONS: AA: amino acid; ACD: autophagic cell death; ACTB: actin beta; ANXA5: annexin A5; APAF1: apoptotic peptidase activating factor 1; Atg: autophagy related; ATG16L1: autophagy related 16 like 1; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CARD: caspase recruitment domain containing; CASP: caspase; CM-H2DCFDA: chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; Δψm: mitochondrial membrane potential; DN: dominant-negative; DNM1L/DRP1: dynamin 1 like; EBSS: Earle's balanced salt solution; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; HCN: hippocampal neural stem cells; IAM: inner autophagosome membrane; INS: insulin; KO: knockout; LEHD: Z-LEHD-fmk; MAP1LC3: microtubule associated protein 1 light chain 3; MFN1: mitofusin 1; MFN2: mitofusin 2; MTORC1: mechanistic target of rapamycin kinase complex 1; PARP1: poly(ADP-ribose) polymerase 1; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; ROS: reactive oxygen species; sgRNA: single guide RNA; SR-SIM: super-resolution structured illumination microscopy; SQSTM1: sequestosome 1; STS: staurosporine; STX17: syntaxin 17; TMRE: tetramethylrhodamine ethyl ester; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagossomos/metabolismo , Caspase 9/metabolismo , Homeostase , Mitocôndrias/metabolismo , Animais , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Autofagia , Caspase 9/deficiência , Células HeLa , Hipocampo/citologia , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
Autophagy ; 16(3): 512-530, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31234698

RESUMO

Macroautophagy/autophagy is generally regarded as a cytoprotective mechanism, and it remains a matter of controversy whether autophagy can cause cell death in mammals. Here, we show that chronic restraint stress suppresses adult hippocampal neurogenesis in mice by inducing autophagic cell death (ACD) of hippocampal neural stem cells (NSCs). We generated NSC-specific, inducible Atg7 conditional knockout mice and found that they had an intact number of NSCs and neurogenesis level under chronic restraint stress and were resilient to stress- or corticosterone-induced cognitive and mood deficits. Corticosterone treatment of adult hippocampal NSC cultures induced ACD via SGK3 (serum/glucocorticoid regulated kinase 3) without signs of apoptosis. Our results demonstrate that ACD is biologically important in a mammalian system in vivo and would be an attractive target for therapeutic intervention for psychological stress-induced disorders.Abbreviations: AAV: adeno-associated virus; ACD: autophagic cell death; ACTB: actin, beta; Atg: autophagy-related; ASCL1/MASH1: achaete-scute family bHLH transcription factor 1; BafA1: bafilomycin A1; BrdU: Bromodeoxyuridine/5-bromo-2'-deoxyuridine; CASP3: caspase 3; cKO: conditional knockout; CLEM: correlative light and electron microscopy; CORT: corticosterone; CRS: chronic restraint stress; DAB: 3,3'-diaminobenzidine; DCX: doublecortin; DG: dentate gyrus; GC: glucocorticoid; GFAP: glial fibrillary acidic protein; HCN: hippocampal neural stem; i.p.: intraperitoneal; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MKI67/Ki67: antigen identified by monoclonal antibody Ki 67; MWM: Morris water maze; Nec-1: necrostatin-1; NES: nestin; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NSC: neural stem cell; PCD: programmed cell death; PFA: paraformaldehyde; PX: Phox homology; PtdIns3P: phosphatidylinositol-3-phosphate; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; SGK: serum/glucocorticoid-regulated kinases; SGZ: subgranular zone; SOX2: SRY (sex determining region Y)-box 2; SQSTM1: sequestosome 1; STS: staurosporine; TAM: tamoxifen; Ulk1: unc-51 like kinase 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VIM: vimentin; WT: wild type; ZFYVE1: zinc finger, FYVE domain containing 1; Z-VAD/Z-VAD-FMK: pan-caspase inhibitor.


Assuntos
Autofagia , Transtornos Cognitivos/patologia , Hipocampo/patologia , Células-Tronco Neurais/patologia , Neurogênese , Estresse Fisiológico , Animais , Ansiedade/complicações , Apoptose , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/metabolismo , Transtornos Cognitivos/complicações , Corticosterona/administração & dosagem , Depressão/complicações , Proteína Duplacortina , Deleção de Genes , Inativação Gênica , Proteínas Imediatamente Precoces/metabolismo , Camundongos Knockout , Necroptose , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
11.
Front Mol Neurosci ; 12: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853892

RESUMO

Regulated cell death (RCD) plays a fundamental role in human health and disease. Apoptosis is the best-studied mode of RCD, but the importance of other modes has recently been gaining attention. We have previously demonstrated that adult rat hippocampal neural stem (HCN) cells undergo autophagy-dependent cell death (ADCD) following insulin withdrawal. Here, we show that Parkin mediates mitophagy and ADCD in insulin-deprived HCN cells. Insulin withdrawal increased the amount of depolarized mitochondria and their colocalization with autophagosomes. Insulin withdrawal also upregulated both mRNA and protein levels of Parkin, gene knockout of which prevented mitophagy and ADCD. c-Jun is a transcriptional repressor of Parkin and is degraded by the proteasome following insulin withdrawal. In insulin-deprived HCN cells, Parkin is required for Ca2+ accumulation and depolarization of mitochondria at the early stages of mitophagy as well as for recognition and removal of depolarized mitochondria at later stages. In contrast to the pro-death role of Parkin during mitophagy, Parkin deletion rendered HCN cells susceptible to apoptosis, revealing distinct roles of Parkin depending on different modes of RCD. Taken together, these results indicate that Parkin is required for the induction of ADCD accompanying mitochondrial dysfunction in HCN cells following insulin withdrawal. Since impaired insulin signaling is implicated in hippocampal deficits in various neurodegenerative diseases and psychological disorders, these findings may help to understand the mechanisms underlying death of neural stem cells and develop novel therapeutic strategies aiming to improve neurogenesis and survival of neural stem cells.

12.
Front Cell Neurosci ; 10: 116, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199668

RESUMO

Cytoplasmic Ca(2+) actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca(2+) levels is observed in various neuropathological states including Alzheimer's and Parkinson's diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca(2+) release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca(2+)-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs-especially RyR3-were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca(2+) regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca(2+) in neural stem cell biology.

13.
Neurosci Lett ; 588: 101-7, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25562207

RESUMO

In this study, a neurite outgrowth-inducing substance was isolated from the ethylacetate extract of the Polygonum multiflorum roots and identified as emodin by gas-liquid chromatography-mass spectrometry and (1)H NMR and (13)C NMR. Emodin displayed remarkable neurite outgrowth-inducing activity in Neuro2a cells, as demonstrated by morphological changes and immunocytochemistry for class III ß-tubulin. Emodin exhibited a stronger neutrophic activity than retinoic acid (RA) known as inducer of neurite outgrowth in Neuro2a cells. Emodin treatment resulted in marked increases in phosphorylation of Akt a direct downstream signaling molecule of phosphatidylinositol 3-kinase (PI3K), but upstream of glycogen synthase kinase-3ß (GSK-3ß) and cAMP response element-binding protein (CREB). These augmentations and neurite-bearing cells induced by emodin were remarkably reduced by the addition of PI3K inhibitor LY294002. These results demonstrate that emodin induces neuronal differentiation of Neuro2a cells via PI3K/Akt/GSK-3ß pathway.


Assuntos
Emodina/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Neuritos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Emodina/isolamento & purificação , Glicogênio Sintase Quinase 3 beta , Camundongos , Neuritos/fisiologia , Extratos Vegetais/química , Polygonum/química , Transdução de Sinais
14.
PLoS One ; 9(12): e114607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25490748

RESUMO

Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Flavanonas/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma de Pulmão , Benzotiazóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Lamiales/química , Células MCF-7 , Serina-Treonina Quinases TOR/metabolismo , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
PLoS One ; 8(12): e83611, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358301

RESUMO

Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.


Assuntos
Adenina/análogos & derivados , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Triterpenos/farmacologia , Adenina/farmacologia , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Osteossarcoma/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA