Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 167, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397552

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is the most commonly valvular disease in the western countries initiated by inflammation and abnormal calcium deposition. Currently, there is no clinical drug for CAVD. Neutrophil elastase (NE) plays a causal role in inflammation and participates actively in cardiovascular diseases. However, the effect of NE on valve calcification remains unclear. So we next explore whether it is involved in valve calcification and the molecular mechanisms involved. METHODS: NE expression and activity in calcific aortic valve stenosis (CAVD) patients (n = 58) and healthy patients (n = 30) were measured by enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry (IHC). Porcine aortic valve interstitial cells (pVICs) were isolated and used in vitro expriments. The effects of NE on pVICs inflammation, apoptosis and calcification were detected by TUNEL assay, MTT assay, reverse transcription polymerase chain reaction (RT-PCR) and western blot. The effects of NE knockdown and NE activity inhibitor Alvelestat on pVICs inflammation, apoptosis and calcification under osteogenic medium induction were also detected by RT-PCR, western blot, alkaline phosphatase staining and alizarin red staining. Changes of Intracellular signaling pathways after NE treatment were measured by western blot. Apolipoprotein E-/- (APOE-/-) mice were employed in this study to establish the important role of Alvelestat in valve calcification. HE was used to detected the thickness of valve. IHC was used to detected the NE and α-SMA expression in APOE-/- mice. Echocardiography was employed to assess the heat function of APOE-/- mice. RESULTS: The level and activity of NE were evaluated in patients with CAVD and calcified valve tissues. NE promoted inflammation, apoptosis and phenotype transition in pVICs in the presence or absence of osteogenic medium. Under osteogenic medium induction, NE silencing or NE inhibitor Alvelestat both suppressed the osteogenic differentiation of pVICs. Mechanically, NE played its role in promoting osteogenic differentiation of pVICs by activating the NF-κB and AKT signaling pathway. Alvelestat alleviated valve thickening and decreased the expression of NE and α-SMA in western diet-induced APOE-/- mice. Alvelestat also reduced NE activity and partially improved the heart function of APOE-/-mice. CONCLUSIONS: Collectively, NE is highly involved in the pathogenesis of valve calcification. Targeting NE such as Alvelestat may be a potential treatment for CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Apolipoproteínas E/metabolismo , Calcinose , Células Cultivadas , Humanos , Inflamação/patologia , Elastase de Leucócito/metabolismo , Camundongos , Osteogênese , Suínos
2.
J Cell Mol Med ; 25(1): 132-146, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191645

RESUMO

It has been reported that chemokine CX3 CL1 can regulate various tumours by binding to its unique receptor CX3 CR1. However, the effect of CX3 CL1-CX3 CR1 on the lung adenocarcinoma and lung squamous cell carcinoma is still unclear. Here, we showed that CX3 CL1 can further invasion and migration of lung adenocarcinoma A549 and lung squamous cell carcinoma H520. In addition, Western blot and immunofluorescence test indicated CX3 CL1 up-regulated the phosphorylation level of cortactin, which is a marker of cell pseudopodium. Meanwhile, the phosphorylation levels of c-Src and c-Abl, which are closely related to the regulation of cortactin phosphorylation, are elevated. Nevertheless, the src/abl inhibitor bosutinib and mutations of cortactin phosphorylation site could inhibit the promotion effect of CX3 CL1 on invasion and migration of A549 and H520. Moreover, these results of MTT, Hoechst staining and Western blot suggested that CX3 CL1 had no effect on the proliferation and apoptosis of A549 and H520 in vitro. The effects of CX3 CL1 were also verified by the subcutaneous tumour formation in nude mice, which showed that it could promote proliferation and invasion of A549 in vivo. In summary, our results indicated that CX3 CL1 furthered invasion and migration in lung cancer cells partly via activating cortactin, and CX3 CL1 may be a potential molecule in regulating the migration and invasion of lung cancer.


Assuntos
Quimiocina CXCL1/metabolismo , Cortactina/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Animais , Apoptose , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
3.
J Mol Cell Cardiol ; 141: 93-104, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32247641

RESUMO

Inflammation is implicated in the pathogenesis of calcific aortic valve disease (CAVD) which is a major contributor to cardiovascular mortality and lacks non-surgical treatment. The progranulin (PGRN) is an important immunomodulatory factor in a variety of inflammatory diseases, including rheumatoid arthritis, osteoarthritis, inflammatory bowel disease and pneumonia. However, its role in calcification of aortic valve remains unknown. We firstly found that PGRN was increased in calcified human aortic valve (AV) tissues. Interestingly, in addition to full-length PGRN (68KD), a much stronger band of approximately 45 KD was also significantly increased. The band of 45 KD (45-GRN), was present in wild type (WT) mouse MEFs and AV but absent in grn-/-MEFs, indicating that it was a specific degradation product derived from PGRN. 45-GRN was upregulated whereas PGRN was reduced in human valve interstitial cells (hVICs) under calcifying conditions which is induced by osteogenic medium (OM). In primary porcine VICs (pVICs), PGRN downregulated TNF-α and α-SMA which was accompanied by downregulation of RUNX2, OPN, OCN, alkaline phosphatase activity and calcium deposition, effects pointing to reduced inflammation, myofibroblastic and osteoblastic transition under calcifying conditions. We overexpressed a mimic of 45-GRN which contains p-G-F-B-A-C in pVICs. However, 45-GRN overexpression promoted OM-induced calcification through activating the Smad1/5/8, NF-κB and AKT signaling pathways. Inhibition of the three signaling pathways suppressed 45-GRN's effect on VICs phenotype transition. 45-GRN promoted TNF-α and expressed converse pathogenic signatures with PGRN during TNF-α stimulation. Collectively, this study provides new insight into the pathogenesis of CAVD, indicating that PGRN is a stratagem in mitigating valve fibrosis/osteoblastic differentiation, and also presenting 45-GRN as a potential target for the treatment of CAVD.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Progranulinas/metabolismo , Animais , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Ecotoxicol Environ Saf ; 203: 110930, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684523

RESUMO

Benzo[a]pyrene(BaP), a polycyclic aromatic hydrocarbons (PAH) of environmental pollutants, is one of the main ingredients in cigarettes and an agonist of the aryl hydrocarbon receptor (AhR). Mesenchymal stem cells (MSCs) including C3H10T1/2 and MEF cells, adult multipotent stem cells, can be differentiated toward osteoblasts during the induction of osteogenic induction factor-bone morphogenetic protein 2(BMP2). Accumulating evidence suggests that BaP decreases bone development in mammals, but the further mechanisms of BaP on BMP2-induced bone formation involved are unknown. Here, we researched the role of BaP on BMP2-induced osteoblast differentiation and bone formation. We showed that BaP significantly suppressed early and late osteogenic differentiation, and downregulated the runt-related transcription factor 2(Runx2), osteocalcin(OCN) and osteopontin (OPN) during the induction of BMP2 in MSCs. Consistent with in vitro results, administration of BaP inhibited BMP2-induced subcutaneous ectopic osteogenesis in vivo. Interestingly, blocking AhR reversed the inhibition of BaP on BMP2-induced osteogenic differentiation, which suggested that AhR played an important role in this process. Moreover, BaP significantly decreased BMP2-induced Smad1/5/8 phosphorylation. Furthermore, BaP significantly reduced bone morphogenetic protein receptor 2(BMPRII) expression and excessively activated Hey1. Thus, our data demonstrate the role of BaP in BMP2-induced bone formation and suggest that impaired BMP/Smad pathways through AhR regulating BMPRII and Hey1 may be an underlying mechanism for BaP inhibiting BMP2-induced osteogenic differentiation.


Assuntos
Benzo(a)pireno/toxicidade , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Benzo(a)pireno/metabolismo , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células HCT116 , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus , Osteoblastos/metabolismo
5.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820586

RESUMO

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

6.
Genes Dis ; 8(4): 531-544, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34179315

RESUMO

Liver is an important organ for regulating glucose and lipid metabolism. Recent studies have shown that bone morphogenetic proteins (BMPs) may play important roles in regulating glucose and lipid metabolism. In our previous studies, we demonstrated that BMP4 significantly inhibits hepatic steatosis and lowers serum triglycerides, playing a protective role against the progression of non-alcoholic fatty liver disease (NAFLD). However, the direct impact of BMP4 on hepatic glucose metabolism is poorly understood. Here, we investigated the regulatory roles of BMP4 in hepatic glucose metabolism. Through a comprehensive analysis of the 14 types of BMPs, we found that BMP4 was one of the most potent BMPs in promoting hepatic glycogen accumulation, reducing the level of glucose in hepatocytes and effecting the expression of genes related to glucose metabolism. Mechanistically, we demonstrated that BMP4 reduced the hepatic glucose levels through the activation of mTORC2 signaling pathway in vitro and in vivo. Collectively, our findings strongly suggest that BMP4 may play an essential role in regulating hepatic glucose metabolism. This knowledge should aid us to understand the molecular pathogenesis of NAFLD, and may lead to the development of novel therapeutics by exploiting the inhibitory effects of BMPs on hepatic glucose and lipid metabolism.

7.
Oncol Rep ; 44(1): 91-102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32377744

RESUMO

Gut microbiota can promote tumor development by producing toxic metabolites and inhibiting the function of immune cells. Previous studies have demonstrated that gut microbiota can reach the liver through the circulation and promote the occurrence of liver cancer. Ciprofloxacin, an effective broad­spectrum antimicrobial agent, can promote cell apoptosis and regulate the function of immune cells. As an important part of the tumor microenvironment, macrophages play an important role in tumor regulation. The present study demonstrated that the treatment of macrophages with ciprofloxacin was able to promote the production of interleukin­1ß, tumor necrosis factor­α and the polarization of CD86+CD206­ macrophages, while inhibiting the polarization of CD86­CD206+ macrophages. This transformation may help macrophages promote tumor cell apoptosis, inhibit tumor cell proliferation, reduce metastasis and downregulate the phosphoinositide 3­kinase/AKT signaling pathway in liver cancer cell lines. In vivo experiments demonstrated that macrophages treated with ciprofloxacin inhibited the growth of subcutaneous implanted tumors in nude mice. In conclusion, the findings of the present study indicated that ciprofloxacin may inhibit liver cancer by upregulating the expression of CD86+CD206­ macrophages. This study further revealed the biological mechanism underlying the potential value of ciprofloxacin in antitumor therapy and provided new targets for the treatment of liver cancer.


Assuntos
Antígeno B7-2/metabolismo , Ciprofloxacina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Neoplasias Hepáticas/imunologia , Macrófagos/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Med ; 41(6): 3379-3393, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29512689

RESUMO

Previous studies have indicated that bone morphogenetic protein 9 (BMP9) can promote the osteogenic differentiation of mesenchymal stem cells (MSCs) and increase bone formation in bone diseases. However, the mechanisms involved remained poorly understood. It is necessary to investigate the specific regulatory mechanisms of osteogenic differentiation that were induced by BMP9. During the process of osteogenic differentiation induced by BMP9, the expression of microRNA-155 (miR-155) exhibited a tendency of increasing at first and then decreasing, which made us consider that miR-155 may have a modulatory role in this process, but the roles of this process have not been elucidated. This study aimed to uncover miR-155 capable of concomitant regulation of this process. mmu-miR-155 mimic (miR-155) was transfected into MSCs and osteogenesis was induction by using recombinant adenovirus expressing BMP9. Overexpressed miR-155 in MSCs led to a decrease in alkaline phosphatase (ALP) staining and Alizarin red S staining during osteogenic differentiation, and reduced the expression of osteogenesis-related genes, such as runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OCN) and osteopontin (OPN). On protein levels, overexpressed miR-155 markedly decreased the expression of phosphorylated Smad1/5/8 (p-Smad1/5/8), Runx2, OCN and OPN. Luciferase reporter assay revealed Runx2 and bone morphogenetic protein receptor 9 (BMPR2) are two direct target genes of miR-155. Downregulation of the expression of Runx2 and BMPR2, respectively could offset the inhibitory effect of miR-155 in the osteogenesis of MSCs. In vivo, subcutaneous ectopic osteogenesis of MSCs in nude mice showed miR-155 inhibited osteogenic differentiation. In conclusion, our results demonstrated that miR-155 can inhibit the osteogenic differentiation induced by BMP9 in MSCs.


Assuntos
Diferenciação Celular/fisiologia , Fator 2 de Diferenciação de Crescimento/metabolismo , MicroRNAs/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/genética , Osteopontina/genética , Osteopontina/metabolismo , Transdução de Sinais/genética , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
9.
Sci Total Environ ; 587-588: 305-315, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249752

RESUMO

Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression. In vitro studies, we employed C3H10T1/2 and bone marrow mesenchymal stem cells (BM-MSCs) with BaP and discovered that BaP impaired innate properties of MSCs. Further investigation into MSCs showed that exposure to BaP activated Ahr signaling and inhibited TGF-ß1/SMAD4 and TGF-ß1/ERK/AKT signaling pathways. Corresponding with the outcomes, tibial fracture calluses produced by BaP-administered rats appeared to delay healing. This effect of BaP was abrogated by resveratrol, a natural Ahr antagonist, in vitro and in vivo. These data demonstrated that Ahr may play a key role in BaP-impaired innate properties by inhibiting SMAD-dependent signaling pathways TGF-ß1/SMAD4 and SMAD-independent TGF-ß1/ERK/AKT signaling pathways. Furthermore, resveratrol inhibited MSCs from adverse effects caused by BaP.


Assuntos
Benzo(a)pireno/toxicidade , Diferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Consolidação da Fratura/efeitos dos fármacos , Animais , Células-Tronco Mesenquimais , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA