RESUMO
In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.
RESUMO
Heavy metal contamination in soil, which is harmful to both ecosystem and mankind, has attracted worldwide attention from the academic and industrial communities. However, the most-widely used remediation technologies such as electrochemistry, elution, and phytoremediation. suffer from either secondary pollution, long cycle time or high cost. In contrast, in situ mineralization technology shows great potential due to its universality, durability and economical efficiency. As such, the development of mineralizers with both high efficiency and low-cost is the core of in situmineralization. In 2021, the concept of 'Super-Stable Mineralization' was proposed for the first time by Kong et al.[1] The layered double hydroxides (denoted as LDHs), with the unique host-guest intercalated structure and multiple interactions between the host laminate and the guest anions, are considered as an ideal class of materials for super-stable mineralization. In this review, we systematically summarize the application of LDHs in the treatment of heavy metal contaminated soil from the view of: 1) the structure-activity relationship of LDHs in in situ mineralization, 2) the advantages of LDHs in mineralizing heavy metals, 3) the scale-up preparation of LDHs-based mineralizers and 4) the practical application of LDHs in treating contaminated soil. At last, we highlight the challenges and opportunities for the rational design of LDH-based mineralizer in the future.
RESUMO
Accurately characterizing the conformational variation of novel molecular assemblies is important but often ignored due to limited characterization methods. Herein, we reported the use of ion-mobility mass spectrometry (IMS/MS) to investigate the conformational changes of four azobenzene covalently functionalized Keggin hybrids (azo-Keggins, compounds 1-4). The as-prepared azo-Keggins showed the general molecular formula of [C16H36N]4[SiW11O40(Si(CH2)3NH-CO(CH2)nO-C6H4N=NC6H4-R)2] (R = H, n = 0 (1); R = NO2, n = 0 (2); R = H, n = 5 (3); R = H, n = 10 (4)). The resultant azo-Keggins maintained stable monomeric states in the gas phase with intact molecular structures. Furthermore, the subtle photo-responsive trans-cis conformational variations of azo-Keggins were clearly revealed by the molecular shape-related collision cross-section value difference ranging from 2.44 Å2 to 6.91 Å2. The longer the alkyl chains linkers were, the larger the conformational variation was. Moreover, for compounds 1 and 2, higher stability in trans-conformation can be observed, while for compounds 3 and 4, bistability can be achieved for both of them.
Assuntos
Compostos Azo , Espectrometria de Mobilidade Iônica , Ânions , Compostos Azo/química , Espectrometria de Massas , PolieletrólitosRESUMO
BACKGROUND: Granulocyte-macrophage colony stimulating factor (GM-CSF) is a cytokine that is used as an immunopotentiator for anti-tumor therapies in recent years. We found that some of the extranodal natural killer/T cell lymphoma (ENKTL) patients with the treatment of hGM-CSF rapidly experienced disease progression, but the underlying mechanisms remain to be elucidated. Here, we aimed to explore the mechanisms of disease progression triggered by GM-CSF in ENKTL. METHODS: The mouse models bearing EL4 cell tumors were established to investigate the effects of GM-CSF on tumor growth and T cell infiltration and function. Human ENKTL cell lines including NK-YS, SNK-6, and SNT-8 were used to explore the expression of programmed death-ligand 1 (PD-L1) induced by GM-CSF. To further study the mechanisms of disease progression of ENKTL in detail, the mutations and gene expression profile were examined by next-generation sequence (NGS) in the ENKTL patient's tumor tissue samples. RESULTS: The mouse-bearing EL4 cell tumor exhibited a faster tumor growth rate and poorer survival in the treatment with GM-CSF alone than in treatment with IgG or the combination of GM-CSF and PD-1 antibody. The PD-L1 expression at mRNA and protein levels was significantly increased in ENKTL cells treated with GM-CSF. STAT5A high-frequency mutation including p.R131G, p.D475N, p.F706fs, p.V707E, and p.S710F was found in 12 ENKTL cases with baseline tissue samples. Importantly, STAT5A-V706fs mutation tumor cells exhibited increased activation of STAT5A pathway and PD-L1 overexpression in the presence of GM-CSF. CONCLUSIONS: These findings demonstrate that GM-CSF potentially triggers the loss of tumor immune surveillance in ENKTL patients and promotes disease progression, which is associated with STAT5 mutations and JAK2 hyperphosphorylation and then upregulates the expression of PD-L1. These may provide new concepts for GM-CSF application and new strategies for the treatment of ENKTL.
Assuntos
Antígeno B7-H1/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Linfoma Extranodal de Células T-NK/imunologia , Evasão Tumoral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Humanos , Camundongos , Regulação para CimaRESUMO
Keggin clusters are the most widely used polyoxometalate building blocks for the construction advanced materials, but effective methods for precisely recognizing the isostructural analogues of Keggins are still limited. In this study we employed the zwitterionic molecule 4,4'-dipyridyl N,N'-dioxide as a recognition receptor to specifically bind to the three Keggin analogues PW12 O40 3- , PMo12 O40 3- , and SiW12 O40 4- , which separately co-assembled into three different types of spherical charged colloids of different sizes. The recognition phenomena were confirmed by electrochemical methods and their crystallization behavior. Compared with solely anion-cation interaction-driven systems, the synergism with the anion-π interactions between the superchaotropic Keggins and the electron-deficient pyridine rings is believed to enhance the recognition. This observation is intriguing as the long-range solution assembly of Keggins is mainly driven by short-range anion-π interactions. Our results show that the little-noticed hydration shell of Keggins is significantly influenced by the superchaotropic effect, leading to differentiated binding affinity to the receptors and more obvious recognition phenomena between tungsten/molybdenum Keggin analogues.
RESUMO
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, no targeted treatment is available for TNBC, and the most common clinical therapy is tumor resection, which often promotes metastasis risks. Strong evidence suggests that the lymphatic metastasis is mediated by the C-C chemokine receptor type 7 (CCR7)/C-C motif chemokine ligand 21 crosstalk between tumor cells and the lymphatic system. It is hypothesized that CCR7 is a key immune modulator in the tumor microenvironment and the local blockade of CCR7 could effectively inhibit TNBC lymphatic metastasis. Accordingly, a plasmid encoding an antagonistic CCR7 affinity protein-CCR7 trap is delivered by tumor targeting nanoparticles in a highly metastatic 4T1 TNBC mouse model. Results show that CCR7 traps are transiently expressed, locally disrupt the signaling pathways in the tumor site, and efficiently inhibit TNBC lymphatic metastasis, without inducing immunosuppression as observed in systemic therapies using CCR7 monoclonal antibody. Significantly, upon applying CCR7 trap therapy prior to tumor resection, a 4T1 TNBC mouse model shows good prognosis without any further metastasis and relapse. In addition, CCR7 trap therapy efficiently inhibits the lymphatic metastasis in a B16F10 melanoma mouse model, indicating its great potential for various metastatic diseases treatment.
Assuntos
Nanopartículas/química , Receptores CCR7/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática/genética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Inflammation has been reported as one significant hallmark of breast cancer in relation to tumor development, metastasis, and invasion. The bradykinin receptor 1 (B1R) is highly expressed on inflammatory breast tumor cells thus providing a promising targeting site for tumor recognition and sufficient receptor mediated endocytosis. In this study, the authors evaluate the targeting efficiency of l-form and d-form [des-Arg10 ]kallidin both in vitro and in vivo. To further improve the drug delivery efficiency, the authors establish a dandelion like nanoparticle by combining the polymeric drug conjugates and aptamer complex together. The doxorubicin conjugated polymer is complexed with adenosine-5'-triphosphate (ATP) sensitive hybridized aptamer in self-assembly process by intercalating into the double strand scaffolds. The acid labile conjugating bond and ATP sensitive aptamer endow the nanoparticle with dual responsiveness to intracellular milieu, thus triggering a quick drug release in tumor cells. Remarkable therapeutic effects and tuned in vivo pharmacokinetics profiles are shown by the aptamer complexed drug conjugates nanoparticle with B1R active targeting modification. Therefore the strategies of B1R targeting and ATP/pH dual-responsiveness nanoparticle help achieve enhanced drug accumulation within tumor cells and efficient chemotherapy for breast cancer.
Assuntos
Trifosfato de Adenosina/química , Sistemas de Liberação de Medicamentos , Calidina/análogos & derivados , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Endocitose , Feminino , Concentração de Íons de Hidrogênio , Calidina/uso terapêutico , Masculino , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Camundongos Nus , Nanopartículas/ultraestrutura , Polímeros/química , Ratos Sprague-Dawley , Distribuição Tecidual , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Energy metabolism abnormity is one of the most significant hallmarks of cancer. As a result, large amino acid transporter 1 (LAT1) is remarkably overexpressed in both blood-brain-barrier and glioma tumor cells, leading a rapid and sufficient substrate transportation. 3CDIT and 4CDIT are originally synthesized by modifying the existing most potent LAT1 substrate. 3CDIT is selected as its higher glioma-targeting ability. Since the microenvironment variation in tumor cells is another important feature of cancer, a great disparity in adenosine-5'-triphosphate (ATP) and glutathione (GSH) levels between extracellular and intracellular milieu can provide good possibilities for dual-responsive drug release in tumor cells. Doxorubicin (DOX) is successfully intercalated into the ATP aptamer DNA scaffolds, compressed by GSH-responsive polymer pOEI, and modified with 3CDIT to obtain 3CDIT-targeting pOEI/DOX/ATP aptamer nanoparticles (NPs). Enhanced NP accumulation and rapid GSH & ATP dual-responsive DOX release in glioma are demonstrated both in vitro and in vivo. More efficient therapeutic effects are shown with 3CDIT-targeting pOEI/DOX/ATP aptamer NPs than free DOX and no systemic toxicity is observed. Therefore, glioma-targeting delivery and GSH & ATP dual-responsive release guarantee an adequate DOX accumulation within tumor cells and ensure a safe and efficient chemotherapy for glioma.
Assuntos
Aminoácidos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Glioma/metabolismo , Microambiente Tumoral , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Glioma/patologia , Glutationa/metabolismo , Humanos , Espaço Intracelular/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos Nus , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacosRESUMO
Compared with peripheral tumors, glioma is very difficult to treat, not only because it has general features of tumor but also because the therapy has been restricted by the brain-blood barrier (BBB). The two main features of tumor growth are angiogenesis and proliferation of tumor cells. RNA interference (RNAi) can downregulate VEGF overexpression to inhibit tumor neovascularization. Meanwhile, doxorubicin (DOX) has been used for cytotoxic chemotherapy to kill tumor cells. Thus, combining RNAi and chemotherapy has been regarded as a potential strategy for cancer treatment. However, the BBB limits the shVEGF-DOX codelivery system to direct into glioma. Here, a smart drug delivery system modified with a dual functional peptide was established, which could target to transferrin receptor (TfR) overexpressing on both the BBB and glioma. It showed that the dual-targeting delivery system had high tumor targeting efficiency in vitro and in vivo.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Interferência de RNA/efeitos dos fármacos , Receptores da Transferrina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Lipopolymer 49, a solid-phase synthesized T-shaped peptide-like oligoamide containing two central oleic acids, 20 aminoethane, and two terminal cysteine units, is identified as very potent and biocompatible small interfering RNA (siRNA) carrier for gene silencing in glioma cells. This carrier is combined with a novel targeting polymer 727, containing a precise sequence of Angiopep 2 targeting peptide, linked with 28 monomer units of ethylene glycol, 40 aminoethane, and two terminal cysteines in siRNA complex formation. Angiopep-polyethylene glycol (PEG)/siRNA polyplexes exhibit good nanoparticle features, effective glioma-targeting siRNA delivery, and intracellular siRNA release, resulting in an outstanding gene downregulation both in glioma cells and upon intravenous delivery in glioma model nude mice without significant biotoxicity. Therefore, this novel siRNA delivery system is expected to be a promising strategy for targeted and safe glioma therapy.
Assuntos
Técnicas de Transferência de Genes , Glioma/tratamento farmacológico , Peptídeos/química , Polímeros/química , RNA Interferente Pequeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carbocianinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Sistemas de Liberação de Medicamentos , Eletroforese em Gel de Ágar , Endocitose/efeitos dos fármacos , Inativação Gênica , Glioma/genética , Glioma/patologia , Humanos , Camundongos Nus , Nanopartículas/química , Oxirredução , Polietilenoglicóis/química , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , TransfecçãoRESUMO
A new linear-dendritic copolymer composed of poly(ethylene glycol) (PEG) and all-trans-retinoic acid (ATRA) was synthesized as the anticancer drug delivery platform (PEG-G3-RA8). It can self-assemble into core-shell micelles with a low critical micelle concentration (CMC) at 3.48 mg/L. Paclitaxel (PTX) was encapsulated into PEG-G3-RA8 to form PEG-G3-RA8/PTX micelles for breast cancer treatment. The optimized formulation had high drug loading efficacy (20% w/w of drug copolymer ratio), nanosized diameter (27.6 nm), and narrow distribution (PDI = 0.103). Compared with Taxol, PEG-G3-RA8/PTX remained highly stable in the serum-containing cell medium and exhibited 4-fold higher cellular uptake. Besides, near-infrared fluorescence (NIR) optical imaging results indicated that fluorescent probe loaded micelle had a preferential accumulation in breast tumors. Pharmacokinetics and biodistribution studies (10 mg/kg) showed the area under the plasma concentration-time curve (AUC0-∞) and mean residence time (MRT0-∞) for PEG-G3-RA8/PTX and Taxol were 12.006 ± 0.605 mg/L h, 2.264 ± 0.041 h and 15.966 ± 1.614 mg/L h, 1.726 ± 0.097 h, respectively. The tumor accumulation of PEG-G3-RA8/PTX group was 1.89-fold higher than that of Taxol group 24 h postinjection. With the advantages like efficient cellular uptake and preferential tumor accumulation, PEG-G3-RA8/PTX showed superior therapeutic efficacy on MCF-7 tumor bearing mice compared to Taxol.
Assuntos
Neoplasias da Mama , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/química , Polietilenoglicóis/química , Tretinoína/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Dendrímeros/administração & dosagem , Dendrímeros/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Ratos , Tretinoína/administração & dosagem , Tretinoína/metabolismoRESUMO
Morphology evolution of sulfonic acid functionalized organosilica nanohybrids (Si(Et)Si-Pr/ArSO3 H) with a 1D tubular structure (inner diameter of ca. 5â nm), a 2D hexagonal mesostructure (pore diameter of ca. 5â nm), and a 3D hollow spherical structure (shell thickness of 2-3â nm and inner diameter of ca. 15â nm) was successfully realized through P123-templated sol-gel cocondensation strategies and fine-tuning of the acidity followed by aging or a hydrothermal treatment. The Si(Et)Si-Pr/ArSO3 H nanohybrids were applied in synthesis of alkyl levulinates from the esterification of levulinic acid and ethanolysis of furfural alcohol. Hollow spherical Si(Et)Si-Pr/ArSO3 H and hexagonal mesoporous analogues exhibited the highest and lowest catalytic activity, respectively, among three types of nanohybrids; additionally, the activity was influenced by the -SO3 H loading. The activity differences are explained in terms of different Brønsted acid and textural properties, reactant/product diffusion, and mass transfer rate, as well as accessibility of -SO3 H sites to the reactant molecules. The reusability of the nanohybrids was also evaluated.
Assuntos
Ácidos Levulínicos/síntese química , Nanoestruturas/química , Compostos de Organossilício/química , Ácidos Sulfônicos/química , Biomassa , Catálise , Ácidos Levulínicos/isolamento & purificação , Nanoestruturas/ultraestrutura , PorosidadeRESUMO
Achieving effective gene therapy for glioma depends on gene delivery systems. The gene delivery system should be able to cross the blood-brain barrier (BBB) and further target glioma at its early stage. Active brain tumor targeted delivery can be achieved using the "Trojan horse" technology, which involves either endogenous ligands or extraneous substances that can recognize and bind to specific receptors in target sites. This method facilitates receptor-mediated endocytosis to cross the BBB and enter into glioma cells. Dendrigraft poly-l-lysines (DGLs), which are novel nonviral gene vectors, are conjugated to a peptide (sequence: EPRNEEK) derived from Streptococcus pneumonia, a pathogen causing meningitis. This process yields peptide-modified nanoparticles (NPs) after DNA loading. Cellular uptake and in vivo imaging results indicate that EPRNEEK peptide-modified NPs have a better brain tumor targeted effect compared with a pentapeptide derived from endogenous laminin after intravenous injection. The mechanism of this effect is further explored in the present study. Besides, EPRNEEK peptide-modified NPs also exhibited a prolonged median survival time. In conclusion, the EPRNEEK peptide-modified DGL NPs exhibit potential as a nonviral platform for efficient, noninvasive, and safe brain glioma dual-targeted gene delivery.
Assuntos
Nanopartículas/química , Peptídeos/química , Streptococcus pneumoniae/química , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Transferência de Genes , Humanos , Lisina/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos NusRESUMO
The development of acid-base catalysts for one-pot cascade reactions remains challenging because of the inherent incompatibility of inorganic acid and base active sites. Here, we introduced an innovative approach that employs spatial separation to construct separated inorganic acid-base sites, achieving sequence control of acid-base cascade reactions. The as-prepared bifunctional catalyst applied metal-organic framework (MOF) nanocrystals as spatial separators, with the inside microcavities loaded with 1 nm inorganic polyoxometalate acid H3PMo12O40 clusters (NENU-5) and the outside crystal surface covered with basic CuCo layered double hydroxide (CuCo-LDH) nanosheets. By applying the resultant NENU-5@CuCo-LDH catalyst to cascade deacetalization-Knoevenagel condensation, over 99% of the benzaldehyde dimethyl acetal (BDMA) was transformed into the final benzylidene cyanoacetate (BCA) with a 99% yield at 80 °C and solvent-free conditions. Compared to the random NENU-5+CuCo-LDH, the NENU-5@CuCo-LDH with spatially separated acid-base sites indicated a higher reaction rate due to the designed reaction sequence and the shorter mass transfer pathway. Moreover, this hierarchical structure showed inherent shape selectivity and extraordinary stability. This study introduces spatial separation to address the incompatibility issue between inorganic acid and base active sites, offering novel perspectives for acid-base systems.
RESUMO
PURPOSE: To prepare an angiopep-conjugated dendrigraft poly-L-lysine (DGL)-based gene delivery system and evaluate the neuroprotective effects in the rotenone-induced chronic model of Parkinson's disease (PD). METHODS: Angiopep was applied as a ligand specifically binding to low-density lipoprotein receptor-related protein (LRP) which is overexpressed on blood-brain barrier (BBB), and conjugated to biodegradable DGL via hydrophilic polyethyleneglycol (PEG), yielding DGL-PEG-angiopep (DPA). In vitro characterization was carried out. The neuroprotective effects were evaluated in a chronic parkinsonian model induced by rotenone using a regimen of multiple dosing intravenous administrations. RESULTS: The successful synthesis of DPA was demonstrated via (1)H-NMR. After encapsulating the therapeutic gene encoding human glial cell line-derived neurotrophic factor (hGDNF), DPA/hGDNF NPs showed a sphere-like shape with the size of 119 ± 12 nm and zeta potential of 8.2 ± 0.7 mV. Angiopep-conjugated NPs exhibited higher cellular uptake and gene expression in brain cells compared to unmodified counterpart. The pharmacodynamic results showed that rats in the group with five injections of DPA/hGDNF NPs obtained best improved locomotor activity and apparent recovery of dopaminergic neurons compared to those in other groups. CONCLUSION: This work provides a practical non-viral gene vector for long-term gene therapy of chronic neurodegenerative disorders.
Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanoconjugados/química , Doença de Parkinson/terapia , Peptídeos/química , Animais , Linhagem Celular Tumoral , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Doença de Parkinson/genética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Fatores de TempoRESUMO
The NiCo alloy is one of the most promising alternatives to the noble-metal electrocatalysts for the hydrogen evolution reaction (HER); however, its performance is largely restricted by insufficient active sites and low surface area. Here, we fabricated a hierarchical hollow carbon cage supported NiCo alloy (denoted as HC NiCo/C) and a bulk NiCo alloy (denoted as NiCo) by reduction of a partially ZIF-67 etched ZIF-67@NiCo-LDH (LDH = layered double hydroxide) precursor and a fully ZIF-67 etched NiCo-LDH precursor, respectively. The as-prepared HC NiCo/C, in which the Ni29Co71 alloy nanocrystals with an average 6 nm size were encapsulated in graphitic carbon layers, provided a vastly increased electrochemically active surface area (ca. 13 times than the NiCo) and abundant catalytic active sites, which resulted in a higher HER performance with an overpotential of 99 mV than the 198 mV for NiCo at 10 mA cm-2. Detailed experimental results suggested that only the HC NiCo/C possessed the active alloy surface composed of unsaturated Ni0 and Co0 atoms, and both the metal-support interaction and alloying effect influenced the electronic structure of Co and Ni in HC NiCo/C, whereas the NiCo exhibited pure Ni surface. Theoretical calculations further revealed the Ni29Co71 alloy surface in HC NiCo/C possessed the appropriate adsorption energy of the intermediate state (adsorbed H*). This work provided new insight into the construction of the stable small-sized bimetallic alloy nanocatalysts by regulating the reduction precursors.
RESUMO
Acid-base bifunctional catalysts have attracted increasing attention due to the improved overall efficiency of synthetic reactions. Herein, we reported the successful fabrication of a PW12@NiCo-LDH acid-base bifunctional catalyst by using the in-situ encapsulation-reassembly strategy. The evolution process of morphology and structure was monitored carefully by various time-dependent characterizations. X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations demonstrated that the terminal oxygen of PW12 in PW12@NiCo-LDH preferred to assemble with the oxygen vacancies on NiCo-LDH. When applied for deacetalization-Knoevenagel condensation, the PW12@NiCo-LDH displayed >99% conversion of benzaldehyde dimethyl acetal (BDMA) and >99% yield of ethyl α-cyanocinnamate (ECC). Moreover, PW12@NiCo-LDH can be recycled at least 10 cycles without obvious structural change, which can be attributed to the confinement of PW12 into the NiCo-LDH nanocage. Such excellent catalytic activity of PW12@NiCo-LDH was benefited from the short mass transfer pathway between acid sites and base sites, which was caused by the stable assembly between PW12 and NiCo-LDH.
RESUMO
Layered double hydroxides (LDHs) are considered a promising catalyst for photocatalytic CO2 reduction due to their broad photoresponse, facile channels for electron transfer, and the presence of abundant defects. Herein, we reported for the first time the fabrication of a novel photocatalyst MIL-100@NiMn-LDH with a hierarchical architecture by selecting MIL-100 (Mn) as a template to provide Mn3+ for the in situ growth of ultrathin NiMn-LDH nanosheets. Moreover, the in situ growth strategy exhibited excellent universality toward constructing MIL-100@LDH hierarchical architectures. When applied in the photocatalytic CO2 reduction reaction, the as-prepared MIL-100@NiMn-LDH exhibited excellent CH4 selectivity of 88.8% (2.84 µmol h-1), while the selectivity of H2 was reduced to 1.8% under visible light irradiation (λ > 500 nm). Such excellent catalytic performance can be attributed to the fact that (a) the MIL-100@NiMn-LDH hierarchical architectures with exposed catalytic active sites helped to enhance the CO2 adsorption and activation and (b) the presence of rich oxygen vacancies and coordinately unsaturated metal sites in MIL-100@NiMn-LDH that optimized the band gap and accelerated the separation/transport of photoinduced charges.
RESUMO
Tumor associated fibroblasts (TAFs) are key stromal cells mediating the desmoplastic reaction and being partially responsible for the drug-resistance and immunosuppressive microenvironment formation in solid tumors. Delivery of genotoxic drugs off-targetedly to kill TAFs results in production of Wnt16 which renders the neighboring tumor cells drug resistant as shown in our previous study (PMC4623876). Our current approach looks for means to deactivate, rather than kill, TAFs. Reactive oxygen species (ROS) are the central hub of multiple profibrogenic pathways and indispensable for TAFs activation. Herein, puerarin was identified to effectively downregulate ROS production in the activated myofibroblast. In this study, a novel puerarin nanoemulsion (nanoPue) was developed to improve the solubility and bioavailability of puerarin. NanoPue significantly deactivated the stromal microenvironment (e.g., ~6-fold reduction of TAFs in nanoPue treated mice compared with the PBS control, p < 0.0001) and facilitated chemotherapy effect of nano-paclitaxel in the desmoplastic triple-negative breast cancer (TNBC) model. Moreover, the removal of the physical barrier increased intra-tumoral infiltration of cytotoxic T cell by 2-fold. This activated immune microenvironment allowed nanoPue to synergize PD-L1 blockade therapy in TNBC model.
Assuntos
Isoflavonas , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Imunoterapia , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente TumoralRESUMO
Activated hepatic stellate cell (aHSC)-mediated liver fibrosis is essential to the development of liver metastasis. Here, we discover intra-hepatic scale-up of relaxin (RLN, an anti-fibrotic peptide) in response to fibrosis along with the upregulation of its primary receptor (RXFP1) on aHSCs. The elevated expression of RLN serves as a natural regulator to deactivate aHSCs and resolve liver fibrosis. Therefore, we hypothesize this endogenous liver fibrosis repair mechanism can be leveraged for liver metastasis treatment via enforced RLN expression. To validate the therapeutic potential, we utilize aminoethyl anisamide-conjugated lipid-calcium-phosphate nanoparticles to deliver plasmid DNA encoding RLN. The nanoparticles preferentially target metastatic tumor cells and aHSCs within the metastatic lesion and convert them as an in situ RLN depot. Expressed RLN reverses the stromal microenvironment, which makes it unfavorable for established liver metastasis to grow. In colorectal, pancreatic, and breast cancer liver metastasis models, we confirm the RLN gene therapy results in significant inhibition of metastatic progression and prolongs survival. In addition, enforced RLN expression reactivates intra-metastasis immune milieu. The combination of the RLN gene therapy with PD-L1 blockade immunotherapy further produces a synergistic anti-metastatic efficacy. Collectively, the targeted RLN gene therapy represents a highly efficient, safe, and versatile anti-metastatic modality, and is promising for clinical translation.