Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892287

RESUMO

Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Animais
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542492

RESUMO

The phrase "Let food be thy medicine…" means that food can be a form of medicine and medicine can be a form of food; in other words, that the diet we eat can have a significant impact on our health and well-being. Today, this phrase is gaining prominence as more and more scientific evidence suggests that one's diet can help prevent and treat disease. A diet rich in fruits, vegetables, whole grains, and lean protein can help reduce the risk of heart disease, cancer, diabetes, and other health problems and, on the other hand, a diet rich in processed foods, added sugars, and saturated fats can increase the risk of the same diseases. Electrophilic compounds in the diet can have a significant impact on our health, and they are molecules that covalently modify cysteine residues present in the thiol-rich Keap1 protein. These compounds bind to Keap1 and activate NRF2, which promotes its translocation to the nucleus and its binding to DNA in the ARE region, triggering the antioxidant response and protecting against oxidative stress. These compounds include polyphenols and flavonoids that are nucleophilic but are converted to electrophilic quinones by metabolic enzymes such as polyphenol oxidases (PPOs) and sulfur compounds present in foods such as the Brassica genus (broccoli, cauliflower, cabbage, Brussel sprouts, etc.) and garlic. This review summarizes our current knowledge on this subject.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Dieta
3.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000421

RESUMO

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Rutênio/química , Rutênio/farmacologia , Peptídeos/química , Peptídeos/farmacologia
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473850

RESUMO

Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.


Assuntos
Antioxidantes , Selênio , Humanos , Antioxidantes/farmacologia , Vitaminas/farmacologia , Selênio/farmacologia , Polifenóis/farmacologia , Estresse Oxidativo , Vitamina A/farmacologia , Vitamina K/farmacologia , Espécies Reativas de Oxigênio/farmacologia
5.
Org Biomol Chem ; 21(34): 6940-6948, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581278

RESUMO

A common protocol for enantioselective alkynylation of isatins and isatin-derived ketimines using terminal alkynes and Me2Zn in the presence of a catalytic amount of a chiral perhydro-1,3-benzoxazine with moderate to excellent enantioselectivity under mild reaction conditions is described. The additions to ketimines present a novel approach to chiral amines being derivatives of oxindoles. The reaction is broad in scope with respect to aryl- and alkyl-substituted terminal alkynes and isatin derivatives. In isatins, the alkynylation occurs at the Si face of the carbonyl group, whereas in the ketimine derivatives it occurs at the Re face of the imine.

6.
J Biochem Mol Toxicol ; 37(11): e23455, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37437103

RESUMO

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.


Assuntos
Antioxidantes , Oxidantes , Humanos , Antioxidantes/farmacologia , Oxidantes/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/química , Radicais Livres/farmacologia , Biomarcadores/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768162

RESUMO

Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Imunidade Inata
8.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894920

RESUMO

This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Inflamação/patologia , Dano ao DNA , Oxirredução , Estresse Oxidativo , DNA , Desoxiguanosina/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430532

RESUMO

This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.


Assuntos
Aminoácidos , Cisteína , Aminoácidos/metabolismo , Triptofano , Proteínas , Metionina , Tirosina
10.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555303

RESUMO

This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Humanos , Compostos Clorados/química , Óxidos/química , Oxirredução , Desinfetantes/farmacologia , Cloro , Desinfecção
11.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142645

RESUMO

This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.


Assuntos
Ácido Hipocloroso , Ácidos Nucleicos , Aminas , Aminoácidos , Animais , Carboidratos , Ácido Hipocloroso/metabolismo , Lipídeos , Mamíferos/metabolismo , Peroxidase/metabolismo
12.
Org Biomol Chem ; 19(17): 3859-3867, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949556

RESUMO

A conformationally restricted perhydro-1,3-benzoxazine derived from (-)-8-aminomenthol behaves as a good chiral ligand in the dimethylzinc-mediated enantioselective monoaddition of aromatic and aliphatic terminal alkynes to 1,2-diketones. The corresponding α-hydroxyketones were obtained in good yields with high enantioselectivities starting from both aromatic and aliphatic 1,2-diketones. The alkynylation of unsymmetrical 1,2-diketones with electronically different substituents also proceeds with high regio- and enantioselectivity. This reaction provides a practical method to synthesize ketones bearing a chiral tertiary propargylic alcohol.

13.
Org Biomol Chem ; 13(34): 9118-26, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26223944

RESUMO

Enantiopure 1,4-oxazepane derivatives have been prepared by selenocyclofunctionalization of chiral 3-prenyl- and 3-cinnamyl-2-hydroxymethyl-substituted perhydro-1,3-benzoxazine derivatives. The 7-endo-cyclization occurs in high yields and diastereoselection. The regio- and stereochemistry of the cyclization products was dependent on the substitution pattern of the double bond, the nature of the hydroxyl group and the experimental conditions.


Assuntos
Benzoxazinas/química , Neopreno/química , Oxazepinas/síntese química , Selênio/química , Ciclização , Estrutura Molecular , Estereoisomerismo
14.
Org Biomol Chem ; 12(2): 345-54, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24264695

RESUMO

The enantio- and diastereoselective one-pot ethylation/cyclopropanation is efficiently promoted by a chiral perhydrobenzoxazine. The catalytic system tolerates a wide range of di- and trisubstituted α,ß-unsaturated aldehydes and has been found to be highly diastereo- and enantioselective. Enals leading to intermediates lacking allylic strain or with either A(1,2) or A(1,3) strain afford the corresponding syn hydroxycyclopropanes very selectively. While α-methyl enals are successfully ethylated/cyclopropanated, the presence of bulky substituents at the alpha position of the enal constitutes a limitation to the substrate scope. The use of 1,1-diiodoethane allows the obtention of the corresponding enantioenriched cyclopropylcarbinol, which bears carbon-substituents at all three positions of the ring, with good enantiocontrol, although moderate diastereoselectivity. A procedure for the asymmetric one-pot arylation/cyclopropanation of enals is proposed, which involves the use of triarylboroxin, diethylzinc and diiodomethane.


Assuntos
Benzoxazinas/química , Ciclopropanos/síntese química , Metanol/síntese química , Compostos Organometálicos/química , Ciclopropanos/química , Metanol/química , Estrutura Molecular , Estereoisomerismo
15.
Vaccines (Basel) ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851096

RESUMO

Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.

16.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238755

RESUMO

Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.

17.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067112

RESUMO

Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.


Assuntos
Sulfeto de Hidrogênio , Animais , Humanos , Cistationina , Gases , Transdução de Sinais , Óxido Nítrico , Mamíferos
18.
Chemistry ; 18(14): 4375-9, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22362651

RESUMO

A highly efficient enantioselective addition of Me(2)Zn to α-ketoesters, assisted by a chiral perhydro-1,3-benzoxazine ligand, is described. This novel catalytic system offers homogeneous elevated enantioselectivities in the preparation of α-hydroxyesters that bear a quaternary stereocenter, with a minor dependence on electronic and steric effects when aromatic, heteroaromatic, or aliphatic α-ketoesters are employed. The catalyst can be recovered and reused without loss of activity.

19.
Vaccines (Basel) ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298601

RESUMO

This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a "respiratory burst" after activation. The anion superoxide •O2- and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2- producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO- and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl- or SCN-, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.

20.
Org Biomol Chem ; 9(19): 6691-9, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21829839

RESUMO

A highly efficient enantioselective aryl addition to aldehydes using boroxins as aryl source and conformationally restricted perhydro-1,3-benzoxazines as ligands is reported. Both enantiomeric forms of chiral arylphenylmethanols and 1,1'-disubstituted diarylmethanols are afforded with excellent yields and enantioselectivities using the same ligand by means of an appropriate combination of boroxin and aromatic aldehyde. The enantiocontrol is not significantly influenced by electronic effects or steric hindrance, even with substituted boroxins. Very homogeneous ee's are reached when substituted arylboroxins are employed, without the use of any class of additive or pre-treatment.


Assuntos
Aldeídos/química , Benzoxazinas/química , Compostos de Boro/química , Compostos Heterocíclicos com 1 Anel/química , Metanol/síntese química , Ligantes , Metanol/análogos & derivados , Metanol/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA