Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0112723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349159

RESUMO

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose , Parasitos , Animais , Humanos , Células Endoteliais , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico
2.
Curr Issues Mol Biol ; 45(6): 4985-5004, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367066

RESUMO

Tumour suppressor p53 plays a key role in the development of cancer and has therefore been widely studied in recent decades. While it is well known that p53 is biologically active as a tetramer, the tetramerisation mechanism is still not completely understood. p53 is mutated in nearly 50% of cancers, and mutations can alter the oligomeric state of the protein, having an impact on the biological function of the protein and on cell fate decisions. Here, we describe the effects of a number of representative cancer-related mutations on tetramerisation domain (TD) oligomerisation defining a peptide length that permits having a folded and structured domain, thus avoiding the effect of the flanking regions and the net charges at the N- and C-terminus. These peptides have been studied under different experimental conditions. We have applied a variety of techniques, including circular dichroism (CD), native mass spectrometry (MS) and high-field solution NMR. Native MS allows us to detect the native state of complexes maintaining the peptide complexes intact in the gas phase; the secondary and quaternary structures were analysed in solution by NMR, and the oligomeric forms were assigned by diffusion NMR experiments. A significant destabilising effect and a variable monomer population were observed for all the mutants studied.

3.
BMC Biol ; 20(1): 197, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271358

RESUMO

BACKGROUND: By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. RESULTS: Attempts to exacerbate the P. falciparum proteome's propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen's viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid ß peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. CONCLUSIONS: Inhibiting protein aggregation in Plasmodium significantly reduces the parasite's viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Agregados Proteicos , Peptídeos beta-Amiloides , Proteoma , Resistência a Medicamentos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/química , Cloroquina/farmacologia , Cloroquina/uso terapêutico
4.
Genome Res ; 29(6): 907-919, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31138618

RESUMO

The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.


Assuntos
Interações Hospedeiro-Patógeno , Modelos Biológicos , Biologia de Sistemas , Viroses/virologia , Fenômenos Fisiológicos Virais , Doença Aguda , Animais , Biomarcadores , Doença Crônica , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Imunidade Humoral , Mediadores da Inflamação/metabolismo , Camundongos , Baço/imunologia , Baço/metabolismo , Biologia de Sistemas/métodos
5.
Bioconjug Chem ; 32(6): 1067-1077, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34033716

RESUMO

Passing through the blood-brain barrier (BBB) to treat neurological conditions is one of the main hurdles in modern medicine. Many drugs with promising in vitro profiles become ineffective in vivo due to BBB restrictive permeability. In particular, this includes drugs such as antiviral porphyrins, with the ability to fight brain-resident viruses causing diseases such as HIV-associated neurocognitive disorders (HAND). In the last two decades, BBB shuttles, particularly peptide-based ones, have shown promise in carrying various payloads across the BBB. Thus, peptide-drug conjugates (PDCs) formed by covalent attachment of a BBB peptide shuttle and an antiviral drug may become key therapeutic tools in treating neurological disorders of viral origin. In this study, we have used various approaches (guanidinium, phosphonium, and carbodiimide-based couplings) for on-resin synthesis of new peptide-porphyrin conjugates (PPCs) with BBB-crossing and potential antiviral activity. After careful fine-tuning of the synthetic chemistry, DIC/oxyma has emerged as a preferred method, by which 14 different PPCs have been made and satisfactorily characterized. The PPCs are prepared by coupling a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective in vitro BBB translocation ability, low cytotoxicity toward mouse brain endothelial cells, and low hemolytic activity. Three of the PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity in vitro, stand out as most promising. Their efficacy against other brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently under evaluation, with preliminary results confirming that PPCs are a promising strategy to treat viral brain infections.


Assuntos
Fármacos Anti-HIV/farmacocinética , Barreira Hematoencefálica/metabolismo , Peptídeos/farmacocinética , Porfirinas/farmacocinética , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Transporte Biológico , Linhagem Celular , Descoberta de Drogas , Células HEK293 , HIV/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Porfirinas/química , Porfirinas/farmacologia
6.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770527

RESUMO

Peripheral Nerve Stimulation (PNS) is a promising approach in functional restoration following neural impairments. Although it proves to be advantageous in the number of implantation sites provided compared with intramuscular or epimysial stimulation and the fact that it does not require daily placement, as is the case with surface electrodes, the further advancement of PNS paradigms is hampered by the limitation of spatial selectivity due to the current spread and variations of nerve physiology. New electrode designs such as the Transverse Intrafascicular Multichannel Electrode (TIME) were proposed to resolve this issue, but their use was limited by a lack of innovative multichannel stimulation devices. In this study, we introduce a new portable multichannel stimulator-called STIMEP-and implement different stimulation protocols in rats to test its versatility and unveil the potential of its combined use with TIME electrodes in rehabilitation protocols. We developed and tested various stimulation paradigms in a single fascicle and thereafter implanted two TIMEs. We also tested its stimulation using two different waveforms. The results highlighted the versatility of this new stimulation device and advocated for the parameterizing of a hyperpolarizing phase before depolarization as well as the use of small pulse widths when stimulating with multiple electrodes.


Assuntos
Estimulação Elétrica , Animais , Eletrodos , Eletrodos Implantados , Ratos
7.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494438

RESUMO

The tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor-inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal. The targeting of protein-protein interactions by external agents, e.g., drugs, remains a substantial challenge. Given their intrinsic features, as well as recent advances that improve their pharmacological profiles, peptides have arisen as promising agents in this regard. Here, we report, by in silico structural design validated by cell-based and in vitro assays, the discovery of four peptides able to target TWEAK. Our results show that, when added to TWEAK-dependent cellular cultures, peptides cause a down-regulation of genes that are part of TWEAK-Fn14 signalling pathway. The direct, physical interaction between the peptides and TWEAK was further elucidated in an in vitro assay which confirmed that the bioactivity shown in cell-based assays was due to the targeting of TWEAK. The results presented here are framed within early pre-clinical drug development and therefore these peptide hits represent a starting point for the development of novel therapeutic agents. Our approach exemplifies the powerful combination of in silico and experimental efforts to quickly identify peptides with desirable traits.


Assuntos
Citocina TWEAK/química , Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Linhagem Celular , Citocina TWEAK/antagonistas & inibidores , Citocina TWEAK/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Conformação Molecular , Peptídeos/farmacologia , Mapeamento de Interação de Proteínas/métodos , Ressonância de Plasmônio de Superfície/métodos
8.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443302

RESUMO

An approach based on a dendrimer display of B- and T-cell epitopes relevant for antibody induction has been shown to be effective as a foot-and-mouth disease (FMD) vaccine. B2T dendrimers combining two copies of the major FMD virus (FMDV) type O B-cell epitope (capsid proteinVP1 (140-158)) covalently linked to a heterotypic T-cell epitope from non-structural protein 3A (21-35), henceforth B2T-3A, has previously been shown to elicit high neutralizing antibody (nAb) titers and IFN-γ-producing cells in both mice and pigs. Here, we provide evidence that the B- and T-cell epitopes need to be tethered to a single molecular platform for successful T-cell help, leading to efficient nAb induction in mice. In addition, mice immunized with a non-covalent mixture of B2T-3A dendrimers containing the B-cell epitopes of FMDV types O and C induced similarly high nAb levels against both serotypes, opening the way for a multivalent vaccine platform against a variety of serologically different FMDVs. These findings are relevant for the design of vaccine strategies based on B- and T-cell epitope combinations.


Assuntos
Dendrímeros/química , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/imunologia , Peptídeos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Camundongos , Especificidade da Espécie , Suínos
9.
Angew Chem Int Ed Engl ; 60(4): 1686-1688, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33200441

RESUMO

Proteolytic stability assessment is increasingly viewed as a fundamental component of peptide characterization, arguably of comparable importance as efficacy and toxicity data. A literature survey over the last decade reveals steady growth in the stability information available. However, it also uncovers two significant problems that hinder proper data comparison: 1) the use of different stability assays, and 2) the differences in how stability information is reported. In this Viewpoint, we present results from a database meta-analysis as well as concerns about the stability assessments published so far. We also suggest guidelines for a proper discussion between experts in the field on how to improve data readability so that peptide stability, an often-missing parameter in older literature, is adequately reported to take maximum advantage of it.


Assuntos
Peptídeos/química , Estabilidade Proteica , Animais , Humanos , Proteólise
10.
Mol Microbiol ; 111(4): 965-980, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30636070

RESUMO

Cell division in most bacteria is directed by FtsZ, a conserved tubulin-like GTPase that assembles forming the cytokinetic Z-ring and constitutes a target for the discovery of new antibiotics. The developmental regulator MciZ, a 40-amino acid peptide endogenously produced during Bacillus subtilis sporulation, halts cytokinesis in the mother cell by inhibiting FtsZ. The crystal structure of a FtsZ:MciZ complex revealed that bound MciZ extends the C-terminal ß-sheet of FtsZ blocking its assembly interface. Here we demonstrate that exogenously added MciZ specifically inhibits B. subtilis cell division, sporulation and germination, and provide insight into MciZ molecular recognition by FtsZ from different bacteria. MciZ and FtsZ form a complex with sub-micromolar affinity, analyzed by analytical ultracentrifugation, laser biolayer interferometry and isothermal titration calorimetry. Synthetic MciZ analogs, carrying single amino acid substitutions impairing MciZ ß-strand formation or hydrogen bonding to FtsZ, show a gradual reduction in affinity that resembles their impaired activity in bacteria. Gene sequences encoding MciZ spread across genus Bacillus and synthetic MciZ slows down cell division in Bacillus species, including pathogenic Bacillus cereus and Bacillus anthracis. Moreover, B. subtilis MciZ is recognized by the homologous FtsZ from Staphylococcus aureus and inhibits division when it is expressed into S. aureus cells.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/antagonistas & inibidores , Peptídeos/farmacologia , Substituição de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas do Citoesqueleto/genética , Regulação Bacteriana da Expressão Gênica , Peptídeos/síntese química , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
11.
Ann Neurol ; 85(1): 137-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30474259

RESUMO

OBJECTIVE: Hand amputation is a highly disabling event, which significantly affects quality of life. An effective hand replacement can be achieved if the user, in addition to motor functions, is provided with the sensations that are naturally perceived while grasping and moving. Intraneural peripheral electrodes have shown promising results toward the restoration of the sense of touch. However, the long-term usability and clinical relevance of intraneural sensory feedback have not yet been clearly demonstrated. METHODS: To this aim, we performed a 6-month clinical study with 3 transradial amputees who received implants of transverse intrafascicular multichannel electrodes (TIMEs) in their median and ulnar nerves. After calibration, electrical stimulation was delivered through the TIMEs connected to artificial sensors in the digits of a prosthesis to generate sensory feedback, which was then used by the subjects while performing different grasping tasks. RESULTS: All subjects, notwithstanding their important clinical differences, reported stimulation-induced sensations from the phantom hand for the whole duration of the trial. They also successfully integrated the sensory feedback into their motor control strategies while performing experimental tests simulating tasks of real life (with and without the support of vision). Finally, they reported a decrement of their phantom limb pain and a general improvement in mood state. INTERPRETATION: The promising results achieved with all subjects show the feasibility of the use of intraneural stimulation in clinical settings. ANN NEUROL 2019;85:137-154.


Assuntos
Amputação Traumática/reabilitação , Membros Artificiais , Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Neuroestimuladores Implantáveis , Tato/fisiologia , Adulto , Amputação Traumática/fisiopatologia , Feminino , Mãos/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
12.
J Interv Cardiol ; 2020: 4386841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549801

RESUMO

BACKGROUND: Voltage mapping allows identifying the arrhythmogenic substrate during scar-related ventricular arrhythmia (VA) ablation procedures. Slow conducting channels (SCCs), defined by the presence of electrogram (EGM) signals with delayed components (EGM-DC), are responsible for sustaining VAs and constitute potential ablation targets. However, voltage mapping, as it is currently performed, is time-consuming, requiring a manual analysis of all EGMs to detect SCCs, and its accuracy is limited by electric far-field. We sought to evaluate an algorithm that automatically identifies EGM-DC, classifies mapping points, and creates new voltage maps, named "Slow Conducting Channel Maps" (SCC-Maps). METHODS: Retrospective analysis of electroanatomic maps (EAM) from 20 patients (10 ischemic, 10 with arrhythmogenic right ventricular dysplasia/cardiomyopathy) was performed. EAM voltage maps were acquired during sinus rhythm and used for ablation. Preprocedural contrast-enhanced cardiac magnetic resonance (Ce-CMR) imaging was available for the ischemic population. Three mapping modalities were analysed: (i) EAM voltage maps using standard (EAM standard) or manual (EAM screening) thresholds for defining core and border zones; (ii) SCC-Maps derived from the use of the novel SCC-Mapping algorithm that automatically identify EGM-DCs measuring the voltage of the local component; and (iii) Ce-CMR maps (when available). The ability of each mapping modality in identifying SCCs and their agreement was evaluated. RESULTS: SCC-Maps and EAM screening identified a greater number of SCC entrances than EAM standard (3.45 ± 1.61 and 2.95 ± 2.31, resp., vs. 1.05 ± 1.10; p < 0.01). SCC-Maps and EAM screening highly correlate with Ce-CMR maps in the ischemic population when compared to EAM standard (Lin's correlation = 0.628 and 0.679, resp., vs. 0.212, p < 0.01). CONCLUSION: The SCC-Mapping algorithm allows an operator-independent analysis of EGM signals showing better identification of the arrhythmogenic substrate characteristics when compared to standard voltage EAM.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Ablação por Cateter , Taquicardia Ventricular/etiologia , Adulto , Idoso , Arritmias Cardíacas/cirurgia , Displasia Arritmogênica Ventricular Direita/cirurgia , Cicatriz/patologia , Cicatriz/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taquicardia Ventricular/diagnóstico
13.
J Org Chem ; 85(3): 1626-1634, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782300

RESUMO

Multimeric antigen display and high overall valency are increasingly regarded as strategic goals for potent and broadly efficacious synthetic vaccines with potential market prospects. Herein, a modular and versatile approach to multifunctional peptide-based vaccine platforms at multimilligram scale in reasonable yields is reported. Preparation of chemoselectively modified peptide building blocks of medium-to-large size, conjugation of these subunits, and final assembly were achieved by a combination of Michael-type thiol-ene addition and copper(I)-mediated alkyne-azide cycloaddition. The size and structural complexity of the building blocks required exploration of a further level of orthogonality, namely furan/maleimide Diels-Alder chemistry. After process optimization, a finely tuned, stepwise click approach has emerged as a workable, on-demand strategy to create macromolecular therapeutic vaccine assemblies.


Assuntos
Azidas , Química Click , Alcinos , Reação de Cicloadição , Peptídeos
14.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172206

RESUMO

Ctn[15-34], the C-terminal fragment of crotalicidin, an antimicrobial peptide from the South American rattlesnake Crotalus durissus terrificus venom, displays remarkable anti-infective and anti-proliferative activities. Herein, its activity on Candida albicans biofilms and its interaction with the cytoplasmic membrane of the fungal cell and with a biomembrane model in vitro was investigated. A standard C. albicans strain and a fluconazole-resistant clinical isolate were exposed to the peptide at its minimum inhibitory concentration (MIC) (10 µM) and up to 100 × MIC to inhibit biofilm formation and its eradication. A viability test using XTT and fluorescent dyes, confocal laser scanning microscopy, and atomic force microscopy (AFM) were used to observe the antibiofilm effect. To evaluate the importance of membrane composition on Ctn[15-34] activity, C. albicans protoplasts were also tested. Fluorescence assays using di-8-ANEPPS, dynamic light scattering, and zeta potential measurements using liposomes, protoplasts, and C. albicans cells indicated a direct mechanism of action that was dependent on membrane interaction and disruption. Overall, Ctn[15-34] showed to be an effective antifungal peptide, displaying antibiofilm activity and, importantly, interacting with and disrupting fungal plasma membrane.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Crotalus/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Venenos de Serpentes/farmacologia
15.
J Biol Chem ; 293(5): 1536-1549, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255091

RESUMO

Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.


Assuntos
Antibacterianos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular , Venenos de Crotalídeos , Crotalus , Escherichia coli , Fragmentos de Peptídeos , Pseudomonas aeruginosa , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Ressonância de Plasmônio de Superfície
16.
J Antimicrob Chemother ; 74(9): 2617-2625, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127270

RESUMO

OBJECTIVES: To investigate the mechanism of action at the molecular level of pepR, a multifunctional peptide derived from the Dengue virus capsid protein, against Staphylococcus aureus biofilms. METHODS: Biofilm mass, metabolic activity and viability were quantified using conventional microbiology techniques, while fluorescence imaging methods, including a real-time calcein release assay, were employed to investigate the kinetics of pepR activity at different biofilm depths. RESULTS: Using flow cytometry-based assays, we showed that pepR is able to prevent staphylococcal biofilm formation due to a fast killing of planktonic bacteria, which in turn resulted from a peptide-induced increase in the permeability of the bacterial membranes. The activity of pepR against pre-formed biofilms was evaluated through the application of a quantitative live/dead confocal laser scanning microscopy (CLSM) assay. The results show that the bactericidal activity of pepR on pre-formed biofilms is dose and depth dependent. A CLSM-based assay of calcein release from biofilm-embedded bacteria was further developed to indirectly assess the diffusion and membrane permeabilization properties of pepR throughout the biofilm. A slower diffusion and delayed activity of the peptide at deeper layers of the biofilm were quantified. CONCLUSIONS: Overall, our results show that the activity of pepR on pre-formed biofilms is controlled by its diffusion along the biofilm layers, an effect that can be counteracted by an additional administration of peptide. Our study sheds new light on the antibiofilm mechanism of action of antimicrobial peptides, particularly the importance of their diffusion properties through the biofilm matrix on their activity.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Vírus da Dengue/genética , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Proteínas do Capsídeo/genética , Infecções Estafilocócicas/microbiologia
17.
Arch Biochem Biophys ; 661: 74-86, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447207

RESUMO

In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.


Assuntos
Pesquisa Biomédica/história , Peptídeos Penetradores de Células/história , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos/história , Sistemas de Liberação de Medicamentos/métodos , Animais , História do Século XX , História do Século XXI , Humanos
18.
Europace ; 21(2): 250-258, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321320

RESUMO

AIMS: Atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI) is usually associated to conduction gaps in pulmonary veins (PVs). Our objective was to characterize gaps in patients with recurrences after a first radiofrequency (RF) or cryoballoon (CB) PVI procedure, using a high-density mapping (HDM) system. METHODS AND RESULTS: Fifty patients with AF recurrence after a first PVI procedure (pre-RF 25 patients; pre-CB 25 patients) were included at two centres. Activation map (AM) and voltage map (VM) of the left atrium and PVs were built using the HDM Rhythmia® system. Superior PVs were reconnected more frequently in both groups. Right PVs were reconnected more frequently in pre-RF patients. Pre-RF patients had more reconnected veins than pre-CB patients (mean ± standard deviation: 3.00 ± 0.96 vs. 1.88 ± 1.13; P < 0.001) and more gaps (4.84 ± 2.06 vs. 2.16 ± 1.49; P < 0.001). Gaps in the VM were wider in pre-CB patients (16.5 ± 9.5 mm vs. 12.1 ± 4.8 mm; P = 0.006). There was a gap in 179 of the 800 PV segments analysed (22%); 52% were identified in both AM and VM maps; 39% only in the AM and 8% only in the VM. The highest sensitivity and specificity for gap detection was obtained with VM in pre-CB patients and with AM in pre-RF patients. CONCLUSION: In conclusion, HDM seems to be a useful and precise tool to detect conduction gaps after a first PVI procedure. The anatomical pattern and location of gaps depends on the technique used previously, usually being multiple, smaller, and better detected by AM after RF, and fewer, wider, and better detected by VM after CB.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Cicatriz/etiologia , Criocirurgia/efeitos adversos , Técnicas Eletrofisiológicas Cardíacas , Veias Pulmonares/cirurgia , Potenciais de Ação , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Cicatriz/diagnóstico , Cicatriz/fisiopatologia , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Veias Pulmonares/fisiopatologia , Recidiva , Fatores de Risco , Espanha , Fatores de Tempo , Resultado do Tratamento
19.
J Pept Sci ; 25(8): e3195, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31317613

RESUMO

Ctn[15-34], a downsized version of the snake venom cathelicidin-like peptide crotalicidin (Ctn), shows an unusually high lifespan (t1/2 , approximately 12 h) in human serum, which significantly adds to its promise as an antimicrobial and antitumor agent. Herein we investigate the role of Ctn[15-34] structure on serum survival. Using a set of analogs, we show that C-terminal amidation, as well as the specific layout of the Ctn[15-34] sequence-a helical N-terminal domain followed by a hydrophobic domain-is crucial for slow degradation, and any change in their arrangement results in significantly lower t1/2 . Aside from the privileged primary structure, features such as self-aggregation can be ruled out as causes for the long serum life. Instead, studies in other protease-rich fluids suggest a key role for certain human serum components. Finally, we demonstrate that Ctn[15-34] is able to induce bacterial death even after 12-hour pre-incubation in serum, in agreement with the proteolytic data. Altogether, the results shed light on the uncommon stability of Ctn[15-34] in human serum and confirm its potential as an anti-infective lead.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Antibacterianos/sangue , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/química , Escherichia coli/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Conformação Proteica , Estabilidade Proteica
20.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590403

RESUMO

G-protein-coupled receptors associate into dimers/oligomers whose function is not well understood. One approach to investigate this issue is to challenge oligomerization by peptides replicating transmembrane domains and to study their effect on receptor functionality. The disruptor peptides are typically delivered by means of cell-penetrating vectors such as the human immunodeficiency virus (HIV) transcription trans-activation protein Tat. In this paper we report a cyclic, Tat-like peptide that significantly improves its linear analogue in targeting interreceptor sequences in the transmembrane space. The same cyclic Tat-like vector fused to a transmembrane region not involved in receptor oligomerization was totally ineffective. Besides higher efficacy, the cyclic version has enhanced proteolytic stability, as shown by trypsin digestion experiments.


Assuntos
Produtos do Gene tat/metabolismo , Peptídeos Cíclicos/metabolismo , Receptor A2A de Adenosina/metabolismo , Produtos do Gene tat/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Peptídeos Cíclicos/genética , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA