Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 580(7801): 87-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238927

RESUMO

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica Populacional
2.
Dis Aquat Organ ; 155: 125-140, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706643

RESUMO

Improving our understanding of the effects of satellite tags on large whales is a critical step in ongoing tag development to minimise potential health effects whilst addressing important research questions that enhance conservation management policy. In 2014, satellite tags were deployed on 9 female southern right whales Eubalaena australis accompanied by a calf off Australia. Photo-identification resights (n = 48) of 4 photo-identified individuals were recorded 1 to 2894 d (1-8 yr) post-tagging. Short-term (<22 d) effects observed included localised and regional swelling, depression at the tag site, blubber extrusion, skin loss and pigmentation colour change. Broad swelling observable from lateral but not aerial imagery (~1.2 m diameter or ~9% of body length) and depression at the tag site persisted up to 1446 d post-tagging for 1 individual, indicating a persistent foreign-body response or infection. Two tagged individuals returned 4 yr post-tagging in 2018 with a calf, and the medium-term effects were evaluated by comparing body condition of tagged whales with non-tagged whales. These females calved in a typical 4 yr interval, suggesting no apparent immediate impact of tagging on reproduction for these individuals, but longer-term monitoring is needed. There was no observable difference in the body condition between the 2 tagged and non-tagged females. Ongoing monitoring post-tagging is required to build on the sample size and statistical power. We demonstrate the value of long-term monitoring programmes and a collaborative approach for evaluating effects from satellite-tagging cetaceans to support species management.


Assuntos
Tecido Adiposo , Baleias , Feminino , Animais , Austrália , Pigmentação , Reprodução
3.
Mov Ecol ; 12(1): 42, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845039

RESUMO

BACKGROUND: Accurate predictions of animal occurrence in time and space are crucial for informing and implementing science-based management strategies for threatened species. METHODS: We compiled known, available satellite tracking data for pygmy blue whales in the Eastern Indian Ocean (n = 38), applied movement models to define low (foraging and reproduction) and high (migratory) move persistence underlying location estimates and matched these with environmental data. We then used machine learning models to identify the relationship between whale occurrence and environment, and predict foraging and migration habitat suitability in Australia and Southeast Asia. RESULTS: Our model predictions were validated by producing spatially varying accuracy metrics. We identified the shelf off the Bonney Coast, Great Australian Bight, and southern Western Australia as well as the slope off the Western Australian coast as suitable habitat for migration, with predicted foraging/reproduction suitable habitat in Southeast Asia region occurring on slope and in deep ocean waters. Suitable foraging habitat occurred primarily on slope and shelf break throughout most of Australia, with use of the continental shelf also occurring, predominanly in South West and Southern Australia. Depth of the water column (bathymetry) was consistently a top predictor of suitable habitat for most regions, however, dynamic environmental variables (sea surface temperature, surface height anomaly) influenced the probability of whale occurrence. CONCLUSIONS: Our results indicate suitable habitat is related to dynamic, localised oceanic processes that may occur at fine temporal scales or seasonally. An increase in the sample size of tagged whales is required to move towards developing more dynamic distribution models at seasonal and monthly temporal scales. Our validation metrics also indicated areas where further data collection is needed to improve model accuracy. This is of particular importance for pygmy blue whale management, since threats (e.g., shipping, underwater noise and artificial structures) from the offshore energy and shipping industries will persist or may increase with the onset of an offshore renewable energy sector in Australia.

4.
Biodivers Data J ; 11: e114729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116475

RESUMO

Background: Satellite tags were deployed on 50 east Australian humpback whales (breeding stock E1) between 2008 and 2010 on their southward migration, northward migration and feeding grounds in order to identify and describe migratory pathways, feeding grounds and possible calving areas. At the time, these movements were not well understood and calving grounds were not clearly identified. To the best of our knowledge, this dataset details all long-term, implantable tag deployments that have occurred to date on breeding stock E1. As such, these data provide researchers, regulators and industry with clear and valuable insights into the spatial and temporal nature of humpback whale movements along the eastern coastline of Australia and into the Southern Ocean. As this population of humpback whales navigates an increasingly complex habitat undergoing various development pressures and anthropogenic disturbances, in addition to climate-mediated changes in their marine environment, this dataset may also provide a valuable baseline. New information: At the time these tracks were generated, these were the first satellite tag deployments intended to deliver long-term, detailed movement information on east Australian (breeding stock E1) humpback whales. The tracking data revealed previously unknown migratory pathways into the Southern Ocean, with 11 individuals tracked to their Antarctic feeding grounds. Once assumed to head directly south on their southern migration, five individuals initially travelled west towards New Zealand. Six tracks detailed the coastal movement of humpback whales migrating south. One tag transmitted a partial southern migration, then ceased transmissions only to begin transmitting eight months later as the animal was migrating north. Northern migration to breeding grounds was detailed for 13 individuals, with four tracks including turning points and partial southern migrations. Another 14 humpback whales were tagged in Antarctica, providing detailed Antarctic feeding ground movements.Broadly speaking, the tracking data revealed a pattern of movement where whales were at their northern limit in July and their southern limit in March. Migration north was most rapid across the months of May and June, whilst migration south was most rapid between November and December. Tagged humpback whales were located on their Antarctic feeding grounds predominantly between January and May and approached their breeding grounds between July and August. Tracking distances ranged from 68 km to 8580 km and 1 to 286 days. To the best of our knowledge, this dataset compiles all of the long-term tag deployments that have occurred to date on breeding stock E1.

5.
Biodivers Data J ; 10: e94228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761560

RESUMO

Background: Satellite tags were deployed on two Antarctic blue whales (Balaenopteramusculusintermedia) in the east Antarctic sector of the Southern Ocean as part of the International Whaling Commission's Southern Ocean Research Partnership initiative. The satellite tracks generated are the first and currently, the only, satellite telemetry data that exist for this critically endangered species. These data provide valuable insights into the movements of Antarctic blue whales on their Antarctic feeding ground. The data were collected between February and April 2013 and span a 110° longitudinal range. New information: This dataset is the first and only detailed movement data that exist for this critically endangered species. As such, this dataset provides the first measures of movement rates (distances travelled, speeds) and movement behaviour (distinguishing transit behaviour from area restricted search behaviour) within the Southern Ocean. These movement-based measures are critical to the ongoing management of Antarctic blue whales as they recover from commercial whaling as they provide insight into foraging behaviour, habitat use, population structure and overlap with anthropogenic threats.

6.
Sci Rep ; 10(1): 21165, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273533

RESUMO

Knowledge about the movement ecology of endangered species is needed to identify biologically important areas and the spatio-temporal scale of potential human impacts on species. Blue whales (Balaenoptera musculus) are endangered due to twentieth century whaling and currently threatened by human activities. In Australia, they feed in the Great Southern Australian Coastal Upwelling System (GSACUS) during the austral summer. We investigate their movements, occupancy, behaviour, and environmental drivers to inform conservation management. Thirteen whales were satellite tagged, biopsy sampled and photo-identified in 2015. All were genetically confirmed to be of the pygmy subspecies (B. m. brevicauda). In the GSACUS, whales spent most of their time over the continental shelf and likely foraging in association with several seascape variables (sea surface temperature variability, depth, wind speed, sea surface height anomaly, and chlorophyll a). When whales left the region, they migrated west and then north along the Australian coast until they reached West Timor and Indonesia, where their movements indicated breeding or foraging behaviour. These results highlight the importance of the GSACUS as a foraging ground for pygmy blue whales inhabiting the eastern Indian Ocean and indicate the whales' migratory route to proposed breeding grounds off Indonesia. Information about the spatio-temporal scale of potential human impacts can now be used to protect this little-known subspecies of blue whale.


Assuntos
Balaenoptera/fisiologia , Comportamento Animal/fisiologia , Movimento/fisiologia , Comunicações Via Satélite , Animais , Austrália , Feminino , Geografia , Masculino , Modelos Biológicos , Especificidade da Espécie
7.
PLoS One ; 15(5): e0231577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380516

RESUMO

Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645-6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.


Assuntos
Migração Animal/fisiologia , Comunicações Via Satélite/estatística & dados numéricos , Estações do Ano , Telemetria/métodos , Baleias/fisiologia , Animais , Austrália , Modelos Estatísticos , Nova Zelândia
9.
Sci Data ; 7(1): 94, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188863

RESUMO

The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.

10.
Sci Rep ; 9(1): 13988, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562374

RESUMO

Humpback whale populations migrate extensively between winter breeding grounds and summer feeding grounds, however known links to remote Antarctic feeding grounds remain limited in many cases. New satellite tracks detail humpback whale migration pathways from Western Australia into the Southern Ocean. These highlight a focal feeding area during austral spring and early summer at the southern Kerguelen plateau, in a western boundary current where a sharp northward turn and retroflection of ocean fronts occurs along the eastern plateau edge. The topographic steering of oceanographic features here likely supports a predictable, productive and persistent forage ground. The spatial distribution of whaling catches and Discovery era mark-recaptures confirms the importance of this region to Western Australian humpback whales since at least historical times. Movement modelling discriminates sex-related behaviours, with females moving faster during both transit and resident periods, which may be a consequence of size or indicate differential energetic requirements. Relatively short and directed migratory pathways overall, together with high-quality, reliable forage resources may provide a partial explanation for the ongoing strong recovery demonstrated by this population. The combination of new oceanographic information and movement data provides enhanced understanding of important biological processes, which are relevant within the context of the current spatial management and conservation efforts in the Southern Ocean.


Assuntos
Migração Animal/fisiologia , Comportamento Alimentar/fisiologia , Jubarte , Animais , Austrália , Oceanos e Mares
11.
PLoS One ; 9(4): e93578, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718589

RESUMO

In Australian waters during the austral summer, pygmy blue whales (Balaenoptera musculus brevicauda) occur predictably in two distinct feeding areas off western and southern Australia. As with other blue whale subspecies, outside the austral summer their distribution and movements are poorly understood. In order to describe the migratory movements of these whales, we present the satellite telemetry derived movements of eleven individuals tagged off western Australia over two years. Whales were tracked from between 8 and 308 days covering an average distance of 3,009±892 km (mean ± se; range: 832 km-14,101 km) at a rate of 21.94±0.74 km per day (0.09 km-455.80 km/day). Whales were tagged during March and April and ultimately migrated northwards post tag deployment with the exception of a single animal which remained in the vicinity of the Perth Canyon/Naturaliste Plateau for its eight day tracking period. The tagged whales travelled relatively near to the Australian coastline (100.0±1.7 km) until reaching a prominent peninsula in the north-west of the state of Western Australia (North West Cape) after which they travelled offshore (238.0±13.9 km). Whales reached the northern terminus of their migration and potential breeding grounds in Indonesian waters by June. One satellite tag relayed intermittent information to describe aspects of the southern migration from Indonesia with the animal departing around September to arrive in the subtropical frontal zone, south of western Australia in December. Throughout their migratory range, these whales are exposed to impacts associated with industry, fishing and vessel traffic. These movements therefore provide a valuable tool to industry when assessing potential interactions with pygmy blue whales and should be considered by conservation managers and regulators when mitigating impacts of development. This is particularly relevant for this species as it continues to recover from past exploitation.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Comunicações Via Satélite , Telemetria , Animais , Austrália , Geografia , Indonésia , Oceanografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA