Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946707

RESUMO

This article describes a part of the results obtained from the cooperation between the University of Lyon1 (France) and the University of Antananarivo (Madagascar). It shows (among others) that useful research can be carried out in developing countries of the tropics if their social, technical, and economic conditions are taken into account. The concepts and methods associated with so-called "green chemistry" are particularly appropriated for this purpose. To illustrate this approach, two examples are shown. The first deals with industrial ecology and concerns waste transformation from the production of cashew nut into an amphiphilic product, oxyacetic derivatives. This product was obtained with a high yield and in a single step reaction. It exhibited an important surfactant property similar to those of the main fossil-based ones but with a much lower ecological impact. The second talks about chemical ecology as an alternative to insecticides and used to control dangerous mosquito populations. New substituted chromones were synthesized and showed biological activities toward Aedes albopictus mosquito species. Strong repellent properties were recorded for some alkoxylated products if others had a significant attractant effect (Kairomone) depending on their stereochemistry and the length of the alkyl chain.


Assuntos
Aedes/fisiologia , Cromonas , Repelentes de Insetos , Animais , Cromonas/síntese química , Cromonas/química , Cromonas/farmacologia , Repelentes de Insetos/síntese química , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Madagáscar
2.
Malar J ; 15: 114, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26944051

RESUMO

BACKGROUND: Deforestation and land-use change have the potential to alter human exposure to malaria. A large percentage of Madagascar's original forest cover has been lost to slash-and-burn agriculture, and malaria is one of the top causes of mortality on the island. In this study, the influence of land-use on the distribution of Plasmodium vectors and concomitant Plasmodium infection in humans and mosquito vectors was examined in the southeastern rainforests of Madagascar. METHODS: From June to August 2013, health assessments were conducted on individuals living in sixty randomly selected households in six villages bordering Ranomafana National Park. Humans were screened for malaria using species-specific rapid diagnostic tests (RDTs), and surveyed about insecticide-treated bed net (ITN) usage. Concurrently, mosquitoes were captured in villages and associated forest and agricultural sites. All captured female Anopheline mosquitoes were screened for Plasmodium spp. using a circumsporozoite enzyme-linked immunosorbent assay (csELISA). RESULTS: Anopheles spp. dominated the mosquito communities of agricultural and village land-use sites, accounting for 41.4 and 31.4 % of mosquitoes captured respectively, whereas Anopheles spp. accounted for only 1.6 % of mosquitoes captured from forest sites. Interestingly, most Anopheles spp. (67.7 %) were captured in agricultural sites in close proximity to animal pens, and 90.8 % of Anopheles mosquitoes captured in agricultural sites were known vectors of malaria. Three Anopheline mosquitoes (0.7 %) were positive for malaria (Plasmodium vivax-210) and all positive mosquitoes were collected from agricultural or village land-use sites. Ten humans (3.7 %) tested were positive for P. falciparum, and 23.3 % of those surveyed reported never sleeping under ITNs. CONCLUSIONS: This study presents the first report of malaria surveillance in humans and the environment in southeastern Madagascar. These findings suggest that even during the winter, malaria species are present in both humans and mosquitoes; with P. falciparum found in humans, and evidence of P. vivax-210 in mosquito vectors. The presence of P. vivax in resident vectors, but not humans may relate to the high incidence of humans lacking the Duffy protein. The majority of mosquito vectors were found in agricultural land-use sites, in particular near livestock pens. These findings have the potential to inform and improve targeted malaria control and prevention strategies in the region.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Conservação dos Recursos Naturais , Plasmodium falciparum , Plasmodium vivax , Adolescente , Adulto , Agricultura , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Madagáscar/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/transmissão , Masculino , Adulto Jovem
3.
J Med Entomol ; 59(2): 430-439, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35039846

RESUMO

The use of semiochemicals as repellents and attractants has been proposed to complement insecticides used for the control of vector mosquito populations. In several studies, the optical purities of the molecules tested have been described as having little or no effect on repellent activity. However, these observations seem difficult to explain because of the chirality effect of molecules on the olfactory system of insects and humans. Thus, the purpose of this study is to assess the effects of chirality on the repellent properties of 4-alcoxycoumarins against Aedes albopictus Skuse, mosquito vector of arboviruses. We report here that the racemic (R/S)-4-sec-butoxycoumarin had the highest repellent effect (Repellent Index = 49.9%) followed by (R) enantiomer (Repellent Index = 24.2%) for the dose of 5 mg/mL. Contrary, no significant repellent activity was recorded for S-(+)-4-sec-butoxycoumarin. This experiment demonstrates the close relationship between the molecules' optical purities and the behavioral response of mosquitoes.


Assuntos
Aedes , Culicidae , Repelentes de Insetos , Inseticidas , Animais , Vetores de Doenças , Repelentes de Insetos/química , Inseticidas/farmacologia , Mosquitos Vetores
4.
Parasit Vectors ; 8: 145, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25889982

RESUMO

BACKGROUND: Malaria is the 4(th) largest cause of mortality in Madagascar. To better understand malaria transmission dynamics, it is crucial to map the distribution of the malaria vectors, mosquitoes belonging to the genus Anopheles. To do so, it is important to have a strong Anopheles-specific lure to ensure the maximum number of captures. Previous studies have isolated volatiles from the human skin microbiota and found the compound 3-methyl-1-butanol to be the most attractive to the malaria mosquito, Anopheles gambiae, in a laboratory setting; and recommended 3-methyl-1-butanol as a compound to increase An. gambiae captures in the field. To date, this compound's ability to lure wild mosquitoes in differing land-use settings has not been tested. In this study, we evaluate the role of the synthetic compound, 3-methyl-1-butanol in combination with field produced CO(2) in attracting Anopheles mosquitoes in varying land-use sites in Madagascar. METHODS: CDC miniature light traps in combination with field produced CO(2) were deployed in and around six villages near Ranomafana National Park, Madagascar. To test the role of 3-methyl-1-butanol in luring Anopheles mosquitoes, two traps were set in each land-use site (village, agricultural sites, and forested habitats affiliated with each village). One was baited with the synthetic odor and the other was kept as a non-baited control. RESULTS: While 3-methyl-1-butanol baited traps did capture An. gambiae s.l. in this study, we did not find traps baited with synthetic 3-methyl-1-butanol to be more successful in capturing Anopheles mosquitoes, (including Anopheles gambiae s.l.) than the non odor-baited control traps in any of the land-use sites examined; however, regardless of odor bait, trapping near livestock pens resulted in the capture of significantly more Anopheles specimens. CONCLUSIONS: A strong synthetic lure in combination with insecticide has great potential as a mosquito control. Our findings suggest that trapping mosquitoes near livestock in malaria endemic regions, such as Madagascar, may be more successful at capturing Anopheles mosquitoes than the proposed 3-1-methyl-butanol lure.


Assuntos
Anopheles/fisiologia , Comportamento Animal/efeitos dos fármacos , Controle de Mosquitos/métodos , Odorantes , Pentanóis/farmacologia , Animais , Madagáscar , Pentanóis/química , Feromônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA