Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150947

RESUMO

Adaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in phenotypes and genotype frequencies over a few generations only. The inference of demographic parameters can allow understanding how evolutionary forces interact and shape the genetic trajectories of populations during rapid adaptation. Here we propose a new Approximate Bayesian Computation (ABC) framework that couples a forward and individual-based model with temporal genetic data to disentangle genetic changes and demographic variations in a case of rapid adaptation. We test the accuracy of our inferential framework and evaluate the benefit of considering a dense versus sparse sampling. Theoretical investigations demonstrate high accuracy in both model and parameter estimations, even if a strong thinning is applied to time series data. Then, we apply our ABC inferential framework to empirical data describing the population genetic changes of the poplar rust pathogen following a major event of resistance overcoming. We successfully estimate key demographic and genetic parameters, including the proportion of resistant hosts deployed in the landscape and the level of standing genetic variation from which selection occurred. Inferred values are in accordance with our empirical knowledge of this biological system. This new inferential framework, which contrasts with coalescent-based ABC analyses, is promising for a better understanding of evolutionary trajectories of populations subjected to rapid adaptation.

2.
Mol Ecol ; 32(10): 2472-2483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34843142

RESUMO

The deployment of plant varieties carrying resistance genes (R) exerts strong selection pressure on pathogen populations. Rapidly evolving avirulence genes (Avr) allow pathogens to escape R-mediated plant immunity through a variety of mechanisms, leading to virulence. The poplar rust fungus Melampsora larici-populina is a damaging pathogen of poplars in Europe. It underwent a major adaptive event in 1994, with the breakdown of the poplar RMlp7 resistance gene. Population genomics studies identified a locus in the genome of M. larici-populina that probably corresponds to the candidate avirulence gene AvrMlp7. Here, to further characterize this effector, we used a population genetics approach on a comprehensive set of 281 individuals recovered throughout a 28-year period encompassing the resistance breakdown event. Using two dedicated molecular tools, genotyping at the candidate locus highlighted two different alterations of a predominant allele found mainly before the resistance breakdown: a nonsynonymous mutation and a complete deletion of this locus. This results in six diploid genotypes: three genotypes related to the avirulent phenotype and three related to the virulent phenotype. The temporal survey of the candidate locus revealed that both alterations were found in association during the resistance breakdown event. They pre-existed before the breakdown in a heterozygous state with the predominant allele cited above. Altogether, these results suggest that the association of both alterations at the candidate locus AvrMlp7 drove the poplar rust adaptation to RMlp7-mediated immunity. This study demonstrates for the first time a case of adaptation from standing genetic variation in rust fungi during a qualitative resistance breakdown.


Assuntos
Basidiomycota , Mutação Puntual , Mutação , Europa (Continente) , Genética Populacional , Fungos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
3.
Mol Ecol ; 21(20): 4996-5008, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22967194

RESUMO

Fungal plant pathogens, especially rust fungi (Pucciniales), are well known for their complex life cycles, which include phases of sexual and asexual reproduction. The effect of asexual multiplication on population genetic diversity has been investigated in the poplar rust fungus Melampsora larici-populina using a nested hierarchical sampling scheme. Four hierarchical levels were considered: leaf, twig, tree and site. Both cultivated and wild poplar stands were sampled at two time points at the start and end of rust epidemics. A total of 641 fungal isolates was analysed using nine microsatellite markers. This study revealed that the genetic signature of asexual multiplication in the wild poplar stand was seen only at lower hierarchical levels (leaf and twig). Moreover, we observed an erosion of clonal structure through time, with an increase in both gene and genotypic diversity. New genotypes contributed to host infection over time, which demonstrates the importance of allo-infection in the epidemic process in this host-pathogen system. Compared with the wild stands, the nearly lack of detection of clonal structure in the cultivated stands reflects the higher infection level on cultivated poplars. More generally, this genetic analysis illustrates the utility of population genetics approach for elucidating the proportion of asexual reproduction in the multiplication of isolates during an epidemic, and for proper quantification of asexual dispersal in plant pathogens.


Assuntos
Basidiomycota/genética , Variação Genética , Genética Populacional/métodos , Populus/microbiologia , DNA Fúngico/genética , Genótipo , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reprodução Assexuada , Análise de Sequência de DNA
4.
Mol Ecol ; 21(10): 2383-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22490255

RESUMO

The advent of molecular epidemiology has greatly improved our ability to identify the population sources and track the pathogen movement. Yet the wide spatial and temporal scales usually considered are useful only to infer historical migration pathways. In this study, Bayesian genetic assignments and a landscape epidemiology approach were combined to unravel genetic origin and annual spread during a single epidemic of a plant pathogen: the poplar rust fungus Melampsora larici-populina. The study focused on a particular area-the Durance River valley-which enabled inoculum sources to be identified and channelled spread of the epidemic along a one-dimensional corridor. Spatio-temporal monitoring of disease showed that the epidemic began in the upstream part of the valley and spread out downstream. Using genetic assignment tests, individuals collected at the end of the epidemic were sorted into two genetic groups; very few hybrids were detected, although individuals from both groups coexisted locally downstream in the valley. The epidemic originated from two genetically distinct inoculum sources. Individuals of each group then dispersed southwards along the Durance River and became mixed in poplar riparian stands. These two genetic groups were found previously at a wider spatial scale and proved to result from distinct evolutionary histories on either wild or cultivated poplars. This study showed that the two groups can mix during an epidemic but do not hybridize because they then reproduce asexually. In general, the methods employed here could be useful for elucidating the genetic origin and retracing the colonization history and migration pathways of recent epidemics.


Assuntos
Basidiomycota/genética , Epidemiologia Molecular/métodos , Doenças das Plantas/microbiologia , Populus/microbiologia , Basidiomycota/patogenicidade , Teorema de Bayes , França , Genótipo , Repetições de Microssatélites , Modelos Biológicos , Virulência
5.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919678

RESUMO

The recent availability of genome-wide sequencing techniques has allowed systematic screening for molecular signatures of adaptation, including in nonmodel organisms. Host-pathogen interactions constitute good models due to the strong selective pressures that they entail. We focused on an adaptive event which affected the poplar rust fungus Melampsora larici-populina when it overcame a resistance gene borne by its host, cultivated poplar. Based on 76 virulent and avirulent isolates framing narrowly the estimated date of the adaptive event, we examined the molecular signatures of selection. Using an array of genome scan methods based on different features of nucleotide diversity, we detected a single locus exhibiting a consistent pattern suggestive of a selective sweep in virulent individuals (excess of differentiation between virulent and avirulent samples, linkage disequilibrium, genotype-phenotype statistical association, and long-range haplotypes). Our study pinpoints a single gene and further a single amino acid replacement which may have allowed the adaptive event. Although our samples are nearly contemporary to the selective sweep, it does not seem to have affected genome diversity further than the immediate vicinity of the causal locus, which can be explained by a soft selective sweep (where selection acts on standing variation) and by the impact of recombination in mitigating the impact of selection. Therefore, it seems that properties of the life cycle of M. larici-populina, which entails both high genetic diversity and outbreeding, has facilitated its adaptation.


Assuntos
Basidiomycota , Populus , Genômica , Doenças das Plantas/microbiologia , Populus/genética
6.
Evol Appl ; 14(2): 513-523, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664791

RESUMO

Crop varieties carrying qualitative resistance to targeted pathogens lead to strong selection pressure on parasites, often resulting in resistance breakdown. It is well known that qualitative resistance breakdowns modify pathogen population structure but few studies have analyzed the consequences on their quantitative aggressiveness-related traits. The aim of this study was to characterize the evolution of these traits following a resistance breakdown in the poplar rust fungus, Melampsora larici-populina. We based our experiment on three temporal populations sampled just before the breakdown event, immediately after and four years later. First, we quantified phenotypic differences among populations for a set of aggressiveness traits on a universally susceptible cultivar (infection efficiency, latent period, lesion size, mycelium quantity, and sporulation rate) and one morphological trait (mean spore volume). Then, we estimated heritability to establish which traits could be subjected to adaptive evolution and tested for evidence of selection. Our results revealed significant changes in the morphological trait but no variation in aggressiveness traits. By contrast, recent works have demonstrated that quantitative resistance (initially assumed more durable) could be eroded and lead to increased aggressiveness. Hence, this study is one example suggesting that the use of qualitative resistance may be revealed to be less detrimental to long-term sustainable crop production.

7.
Infect Genet Evol ; 8(5): 577-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499532

RESUMO

Dispersal has a great impact on the genetic structure of populations, but remains difficult to estimate by direct measures. In particular, gradual and stochastic dispersal are often difficult to assess and to distinguish, although they have different evolutionary consequences. Plant pathogens, especially rust fungi, are suspected to display both dispersal modes, though on different spatial scales. In this study, we inferred dispersal capacities of the poplar rust fungus Melampsora larici-populina by examining the genetic diversity and structure of 13 populations from eight European and two overseas countries in the Northern hemisphere. M. larici-populina was sampled from both cultivated hybrid poplars and on the wild host, Populus nigra. The populations were analyzed with 11 microsatellite and 8 virulence markers. Although isolates displayed different virulence profiles according to the host plant, neutral markers revealed little population differentiation with respect to the type of host. This suggests an absence of reproductive isolation between populations sampled from cultivated and wild poplars. Conversely, studying the relationship between geographic and genetic structure allowed us to distinguish between isolation by distance (IBD) patterns and long distance dispersal (LDD) events. The European populations exhibited a significant IBD pattern, suggesting a regular and gradual dispersal of the pathogen over this spatial scale. Nonetheless, the genetic differentiation between these populations was low, suggesting an important gene flow on a continental scale. The two overseas populations from Iceland and Canada were shown to result from rare LDD events, and exhibited signatures of strong founder effects. Furthermore, the high genetic differentiation between both populations suggested that these two recent introductions were independent. This study illustrated how the proper use of population genetics methods can enable contrasted dispersal modes to be revealed.


Assuntos
Basidiomycota/genética , Efeito Fundador , Geografia , Doenças das Plantas/microbiologia , Populus/microbiologia , Basidiomycota/patogenicidade , Europa (Continente) , Variação Genética , Análise de Regressão , Virulência/genética
8.
Front Plant Sci ; 9: 1396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323821

RESUMO

Foliar pathogens face heterogeneous environments depending on the maturity of leaves they interact with. In particular, nutrient availability as well as defense levels may vary significantly, with opposing effects on the success of infection. The present study tested which of these factors have a dominant effect on the pathogen's development. Poplar leaf disks of eight maturity levels were inoculated with the poplar rust fungus Melampsora larici-populina using an innovative single-spore inoculation procedure. A set of quantitative fungal traits (infection efficiency, latent period, uredinia size, mycelium quantity, sporulation rate, sporulation capacity, and spore volume) was measured on each infected leaf disk. Uninfected parts of the leaves were analyzed for their nutrient (sugars, total C and N) and defense compounds (phenolics) content. We found that M. larici-populina is more aggressive on more mature leaves as indicated by wider uredinia and a higher sporulation rate. Other traits varied independently from each other without a consistent pattern. None of the pathogen traits correlated with leaf sugar, total C, or total N content. In contrast, phenolic contents (flavonols, hydroxycinnamic acid esters, and salicinoids) were negatively correlated with uredinia size and sporulation rate. The pathogen's fitness appeared to be more constrained by the constitutive plant defense level than limited by nutrient availability, as evident in the decrease in sporulation.

9.
Mutat Res ; 595(1-2): 80-90, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16388829

RESUMO

In Streptomyces ambofaciens, white papillae that genetic instability events generate during aerial mycelium growth, give rise to Pig-pap mutants which are unable to sporulate and devoid of large genome rearrangement. Knowing that genetic and environmental factors can influence the number of papillae per colony, we investigated the effect of nutrient limitated conditions of growth on the formation of white papillae. We observed that under nitrogen limitation and, most particularly, under amino acid limitation, the number of papillae per colony dramatically increased. Most of the Pig-pap mutants deriving from such papillae displayed a mutation in the whiG gene, which encodes the sigma factor sigma(whiG) which is absolutely required for the sporulation process. In most cases, the mutation led to a loss of function. We showed that the Pig-pap mutants deriving from papillae appearing under usual growth conditions also frequently displayed null mutation of whiG too. As the whiG mutation ratio among the Pig-pap mutants isolated with or without nitrogen limited conditions did not change, the results described in this paper suggest that the production of papillae could constitute a response of S. ambofaciens to an amino acid limitation.


Assuntos
Genes Bacterianos/genética , Instabilidade Genômica/genética , Micélio/crescimento & desenvolvimento , Nitrogênio/deficiência , Streptomyces/crescimento & desenvolvimento , Streptomyces/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Contagem de Colônia Microbiana , Genoma Bacteriano/genética , Dados de Sequência Molecular , Mutação/genética , Polimorfismo Conformacional de Fita Simples , Alinhamento de Sequência , Esporos Bacterianos/metabolismo , Streptomyces/classificação , Streptomyces/metabolismo
10.
Res Microbiol ; 156(3): 328-40, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15808936

RESUMO

The genetic instability of Streptomyces ambofaciens affects the pigmentation of colonies and generates a variety of mutants the majority of which display large genome rearrangements. Among them, the Pig-pap mutants, which probably result from a mutational event occurring during aerial mycelium growth, display specific features, since they are unable to sporulate and do not harbor any large detectable genome rearrangements. To identify the mutational event causing their phenotype, three Pig-pap mutants originating from three independent mutational events were characterized. These mutants exhibited a whiG-like phenotype which was suppressed by the introduction of one copy of Streptomyces coelicolor whiG. Their own whiG gene was devoid of mutations and appeared to be transcribed at a level similar to that of the WT. However, whiH, the expression of which depends on sigma(WhiG), was not transcribed in any of the three Pig-pap mutants, suggesting that the sigma(WhiG) was absent or inactive. This suggests that in these Pig-pap mutants, the regulation of sigma(WhiG) might be affected. Finally, the introduction of S. coelicolor whiG in one of these Pig-pap mutants restored not only pigmentation and sporulation, but also the ability to once again form white papillae. Analyses of transgene whiG in these papillae revealed that it constitutes a mutational target during aerial mycelium formation when integrated into the genome of this Pig-pap mutant.


Assuntos
Mutação , Fator sigma/genética , Streptomyces/genética , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Conjugação Genética , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Campo Pulsado , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Fator sigma/biossíntese , Fator sigma/metabolismo , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
11.
Front Plant Sci ; 5: 454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309554

RESUMO

The poplar rust fungus Melampsora larici-populina causes significant yield reduction and severe economic losses in commercial poplar plantations. After several decades of breeding for qualitative resistance and subsequent breakdown of the released resistance genes, breeders now focus on quantitative resistance, perceived to be more durable. But quantitative resistance also can be challenged by an increase of aggressiveness in the pathogen. Thus, it is of primary importance to better understand the genetic architecture of aggressiveness traits. To this aim, our goal is to build a genetic linkage map for M. larici-populina in order to map quantitative trait loci related to aggressiveness. First, a large progeny of M. larici-populina was generated through selfing of the reference strain 98AG31 (which genome sequence is available) on larch plants, the alternate host of the poplar rust fungus. The progeny's meiotic origin was validated through a segregation analysis of 115 offspring with 14 polymorphic microsatellite markers, of which 12 segregated in the expected 1:2:1 Mendelian ratio. A microsatellite-based linkage disequilibrium analysis allowed us to identify one potential linkage group comprising two scaffolds. The whole genome of a subset of 47 offspring was resequenced using the Illumina HiSeq 2000 technology at a mean sequencing depth of 6X. The reads were mapped onto the reference genome of the parental strain and 144,566 SNPs were identified across the genome. Analysis of distribution and polymorphism of the SNPs along the genome led to the identification of 2580 recombination blocks. A second linkage disequilibrium analysis, using the recombination blocks as markers, allowed us to group 81 scaffolds into 23 potential linkage groups. These preliminary results showed that a high-density linkage map could be constructed by using high-quality SNPs based on low-coverage resequencing of a larger number of M. larici-populina offspring.

12.
Fungal Biol ; 117(6): 389-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23809649

RESUMO

Melampsora medusae (Mm), one of the causal agents of poplar rust, is classified as an A2 quarantine pest for European Plant Protection Organization (EPPO) and its presence in Europe is strictly controlled. Two formae speciales have been described within Mm, Melampsora medusae f. sp. deltoidae (Mmd), and Melampsora medusae f. sp. tremuloidae (Mmt) on the basis of their pathogenicity on Populus species from the section Aigeiros (e.g. Populus deltoides) or Populus (e.g. Populus tremuloides), respectively. In this study, a real-time polymerase chain reaction (PCR) assay was developed allowing the detection of Mmd, the forma specialis that is economically harmful. A set of primers and hydrolysis probe were designed based on sequence polymorphisms in the large ribosomal RNA subunit (28S). The real-time PCR assay was optimized and performance criteria of the detection method, i.e. sensitivity, specificity, repeatability, reproducibility, and robustness, were assessed. The real-time PCR method was highly specific and sensitive and allowed the detection of one single urediniospore of Mmd in a mixture of 2 mg of urediniospores of other Melampsora species. This test offers improved specificity over currently existing conventional PCR tests and can be used for specific surveys in European nurseries and phytosanitary controls, in order to avoid introduction and spread of this pathogen in Europe.


Assuntos
Basidiomycota/isolamento & purificação , Micologia/métodos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Basidiomycota/genética , Primers do DNA/genética , Europa (Continente) , Sondas de Oligonucleotídeos/genética , Populus/microbiologia , Quarentena , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Appl Environ Microbiol ; 73(17): 5587-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17601812

RESUMO

Phytophthora alni subsp. alni, P. alni subsp. multiformis, and P. alni subsp. uniformis are responsible for alder disease in Europe. Class I and II elicitin gene patterns of P. alni subsp. alni, P. alni subsp. multiformis, P. alni subsp. uniformis, and the phylogenetically close species P. cambivora and P. fragariae were studied through mRNA sequencing and 3' untranslated region (3'UTR)-specific PCRs and sequencing. The occurrence of multiple 3'UTR sequences in association with identical elicitin-encoding sequences in P. alni subsp. alni indicated duplication/recombination events. The mRNA pattern displayed by P. alni subsp. alni demonstrated that elicitin genes from all the parental genomes are actually expressed in this allopolyploid taxon. The complementary elicitin patterns resolved confirmed the possible involvement of P. alni subsp. multiformis and P. alni subsp. uniformis in the genesis of the hybrid species P. alni subsp. alni. The occurrence of multiple and common elicitin gene sequences throughout P. cambivora, P. fragariae, and P. alni sensu lato, not observed in other Phytophthora species, suggests that duplication of these genes occurred before the radiation of these species.


Assuntos
Proteínas de Algas/genética , Duplicação Gênica , Phytophthora/classificação , Phytophthora/genética , Recombinação Genética , Regiões 3' não Traduzidas/genética , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Poliploidia , Proteínas , RNA Mensageiro/genética , Análise de Sequência de DNA
14.
Fungal Genet Biol ; 43(7): 511-29, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16626980

RESUMO

The different subspecies of Phytophthora alni, P. alni subsp. alni (Paa), P. alni subsp. uniformis (Pau), and P. alni subsp. multiformis (Pam), are recent and widespread pathogens of alder in Europe. They are believed to be a group of emergent heteroploid hybrids between two phylogenetically close Phytophthora species. Nuclear and mitochondrial DNA analyses were performed, using a broad collection of P. alni and two closely related species, P. cambivora and P. fragariae. Paa possesses three different alleles for each of the nuclear genes we studied, two of which are present in Pam as well, whereas the third matches the single allele present in Pau. Moreover, Paa displays common mtDNA patterns with both Pam and Pau. A combination of the data suggests that Paa may have been generated on several occasions by hybridization between Pam and Pau, or their respective ancestors. Pau might have P. cambivora as a species ancestor, whereas Pam seems to have either been generated itself by an ancient reticulation or by autopolyploidization.


Assuntos
DNA Fúngico/genética , DNA Mitocondrial/genética , Genes Fúngicos , Phytophthora/genética , Alelos , Sequência de Bases , Impressões Digitais de DNA , DNA Fúngico/química , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
Arch Microbiol ; 179(6): 387-93, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12677359

RESUMO

In Streptomyces, the linear chromosomal DNA is highly unstable and undergoes large rearrangements usually at the extremities. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, AUD ( amplifiable unit of DNA). In Streptomyces ambofaciens, two amplifiable regions (AUD6 and AUD90), located approximately 600 kb and 1,200 kb from the right chromosomal end respectively, have been characterized. Here, the isolation and molecular characterization of a new S. ambofaciens mutant strain exhibiting a green-pigmented phenotype is described; the wild-type produces a gray pigment. In this mutant, both chromosome ends were deleted, which probably led to circularization of the chromosome. These deletions were associated with amplification of a sequence belonging to the chromosomal terminal inverted repeats (TIRs), which might constitute the new fragment generated by the chromosomal circularization.


Assuntos
Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , DNA Bacteriano/química , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Deleção Cromossômica , Sondas de DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Eletroforese em Gel de Campo Pulsado , Modelos Genéticos , Mutação , Pigmentos Biológicos/química , Cromossomos em Anel , Streptomyces/isolamento & purificação , Sequências Repetidas Terminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA