Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 28(59): e202201464, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35866432

RESUMO

The reactivity of aryl monocarboxylic acids (benzoic, 1- or 2-naphtoic, 4'-methylbiphenyl-4-carboxylic, and anthracene-9-carboxylic acids) as complexing agents for the ethoxide niobium(V) (Nb(OEt)5 precursor has been investigated. A total of eight coordination complexes were isolated with distinct niobium(V) nuclearities as well as carboxylate complexation states. The use of benzoic acid gives a tetranuclear core Nb4 (µ2 -O)4 (L)4 (OEt)8 ] (L=benzoate (1)) with four Nb-(µ2 -O)-Nb linkages in a square plane configuration. A similar tetramer, 7, was obtained with 2-naphtoic acid by using a 55 % humid atmosphere synthetic route. Two types of dinuclear brick were identified with one central Nb-(µ2 -O)-Nb linkage; they differ in their complexation state, with one bridging carboxylate ([Nb2 (µ2 -O)(µ2 -OEt)(L)(OEt)6 ], with L=1-naphtoate (3) or anthracene-9-carboxylate (5)) or two bridging carboxylate groups ([Nb2 (µ2 -O)(L)2 (OEt)6 ], with L=4'-methylbiphenyl-4-carboxylic (4) or anthracene-9-carboxylate (6)). An octanuclear moiety [Nb8 (µ2 -O)12 (L)8 (η1 -L)4-x (OEt)4+x ] (with L=2-naphtoate, x=0 or 2; 8) was obtained by using a solvothermal route in acetonitrile; it has a cubic configuration with niobium centers at each node, linked by 12 µ2 -O groups. The formation of the niobium oxo clusters was characterized by infrared and liquid 1 H NMR spectroscopy in order to analyze the esterification reaction, which induces the release of water molecules that further react through oxolation with niobium atoms, in different {Nb2 O}, {Nb4 O4 } and {Nb8 O12 } nuclearities.

2.
Inorg Chem ; 61(39): 15346-15358, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36112884

RESUMO

The reactivity of 2,3-pyridine-dicarboxylic (known as quinolinic or H2qui) acid and 2,5-pyridine-dicarboxylic (known as isocinchomeronic or H2icc) acid has been investigated as a complexing agent toward the niobium(IV) tetrachloride precursor (NbCl4·2THF) in different organic solvent mixtures. It resulted in the isolation of four crystalline assemblies of mononuclear coordination complexes 1-4 [Nb(HL)4·solvent], where HL is the monoprotonated quinolinate (Hqui) ligand (complexes 1-3) or the monoprotonated isocinchomeronate ligand (complex 4). For each complex, the discrete niobium(IV) center is eightfold coordinated to four oxygen atoms from the deprotonated carboxylate arm and four nitrogen atoms from the pyridine part of the dicarboxyl ligand with a dodecahedral environment [NbO4N4]. The remaining carboxyl arm (either in 3 or in 5 position) remained under its protonated form, leading to neutral [Nb(HL)4] moieties for compounds 1, 2, and 4, or the anionic [Nb(qui)(Hqui)3]- moiety for compound 3. The complexes are observed in various molecular arrangements, involving intercalated solvent molecules such as acetonitrile in compound 1 ([Nb(Hqui)4·0.8(CH3CN)], obtained at room temperature), a mixture of acetonitrile and pyridine in compound 2 ([Nb(Hqui)4·0.7CH3CN·2PYR], obtained via the solvothermal reaction at 80 °C), a mixture of pyridine and triethylamine, in addition with water and chloride species, in compound 3 ([Nb(qui)(Hqui)3·Cl·HPYR·HTEA·1.5H2O], obtained via solvothermal reaction at 80 °C), and N,N-dimethylformamide in compound 4 ([Nb(Hicc)4·6DMF], obtained at room temperature). The d1 configuration expected for the niobium(IV) centers has been analyzed by magnetic measurements, as well as by EPR and XPS. An anti-ferromagnetism transition has been observed at very low temperatures for complexes 1 (3.6 K) and 4 (3.3 K), for which the shortest Nb···Nb interatomic lengths occur.

3.
Inorg Chem ; 61(30): 11959-11972, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861587

RESUMO

Trivalent lanthanide ions (Ln3+) hold an exceptional position in the field of optoelectronic materials due to their atomic-like emission spectra and long luminescence lifetimes. Metal-organic frameworks (MOFs) and coordination polymers are particularly suited as luminescent materials due to their structural diversity and ease of functionalization both at bridging ligands and/or metal centers. In this contribution, we present a series of mixed-metal Ln3+/Eu3+ (Ln = La, Gd) and mixed-ligand (2,6-naphthalenedicarboxylate (ndc2-) and 4-aminonaphthalene-2,6-dicarboxylate (andc2-)) MOFs belonging to three different structural types, with emissions spanning most of the visible region, thereby constituting favorable materials for color tuning and white-light emission. We investigate the thermal stability and photophysical properties of the synthesized materials with regard to their metal and ligand doping levels and structural type, where we discuss excimer and monomer emission. The photophysical study, involving both steady-state and time-resolved luminescence measurements, allows us to discuss the possible energy migration and Eu3+ sensitization pathways that take place within these materials following ligand excitation. Low-temperature luminescence studies led us to determine the energies of the ligand-based excited states and investigate their participation in thermally activated energy transfer mechanisms within the studied lattices. We observe emission quantum yields of up to 87% for the Eu3+-doped materials, while their ligand- and metal-doped counterparts show decreased quantum yields of up to 17%. Finally, we attempt fine color tuning by carefully adjusting the doping levels to achieve yellow and white-light emission.

4.
Molecules ; 25(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991766

RESUMO

In this study, we report the luminescence color tuning in the lanthanide metal-organic framework (LnMOF) ([La(bpdc)Cl(DMF)] (1); bpdc2- = [1,1'-biphenyl]-4,4'-dicarboxylate, DMF = N,N-dimethylformamide) by introducing dual emission properties in a La3+ MOF scaffold through doping with the blue fluorescent 2,2'-diamino-[1,1'-biphenyl]-4,4'-dicarboxylate (dabpdc2-) and the red emissive Eu3+. With a careful adjustment of the relative doping levels of the lanthanide ions and bridging ligands, the color of the luminescence was modulated, while at the same time the photophysical characteristics of the two chromophores were retained. In addition, the photophysical properties of the parent MOF (1) and its doped counterparts with various dabpdc2-/bpdc2- and Eu3+/La3+ ratios and the photoinduced energy transfer pathways that are possible within these materials are discussed. Finally, the temperature dependence study on the emission profile of a doped analogue containing 10% dabpdc2- and 2.5% Eu3+ (7) is presented, highlighting the potential of this family of materials to behave as temperature sensors.


Assuntos
Elementos da Série dos Lantanídeos/química , Luminescência , Estruturas Metalorgânicas/química , Metais/química , Algoritmos , Cor , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Elementos da Série dos Lantanídeos/síntese química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Químicos , Conformação Molecular , Reprodutibilidade dos Testes , Temperatura , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA