Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(25): 28915-28922, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958556

RESUMO

We report on a diode-pumped cryogenically cooled bulk Yb:CaF2 12-pass amplifier delivering 110-mJ, 1030-nm pulses at a 50-Hz repetition rate. The pulses have a spectral bandwidth of 13 nm and are compressed to 225 fs pulse duration in a double reflection grating based compressor having a transmission efficiency of >90%. The measured output beam quality is M2<1.1. A key feature of the amplifier design is the 4f relay imaging onto the gain medium with progressive beam magnification for the mitigation of the spatial gain narrowing effect. The number of passes in the amplifier is scalable by increasing the size of imaging mirrors. In order to prevent accumulation of nonlinear phase due to self-phase modulation in air, the amplifier is enclosed into a low-vacuum case.

2.
Opt Express ; 24(21): 23872-23882, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828222

RESUMO

A new route to efficient generation of THz pulses with high-energy was demonstrated using semiconductor materials pumped at an infrared wavelength sufficiently long to suppress both two- and three-photon absorption and associated free-carrier absorption at THz frequencies. For pumping beyond the three-photon absorption edge, the THz generation efficiency for optical rectification of femtosecond laser pulses with tilted intensity front in ZnTe was shown to increase 3.5 times, as compared to pumping below the absorption edge. The four-photon absorption coefficient of ZnTe was estimated to be ß4=(4±1)×10-5 cm5/GW3. THz pulses with 14 µJ energy were generated with as high as 0.7% efficiency in ZnTe pumped at 1.7 µm. It is shown that scaling the THz pulse energy to the mJ level by increasing the pump spot size and pump pulse energy is feasible.

3.
Opt Lett ; 40(9): 2068-71, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927786

RESUMO

A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-µm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.


Assuntos
Raios Infravermelhos , Lasers , Raios Ultravioleta , Fenômenos Ópticos
4.
Opt Lett ; 39(16): 4659-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121842

RESUMO

Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

5.
Opt Lett ; 38(15): 2746-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23903130

RESUMO

We have developed the first (to our knowledge) femtosecond Tm-fiber-laser-pumped Ho:YAG room-temperature chirped pulse amplifier system delivering scalable multimillijoule, multikilohertz pulses with a bandwidth exceeding 12 nm and average power of 15 W. The recompressed 530 fs pulses are suitable for broadband white light generation in transparent solids, which makes the developed source ideal for both pumping and seeding optical parametric amplifiers operating in the mid-IR spectral range.

6.
Opt Lett ; 37(13): 2547-9, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743450

RESUMO

We demonstrate shaping of high-energy broadband Yb amplifier pulses for the generation of a (sub)picosecond top-hat temporal pulse profile that significantly improves pumping efficiency of an optical parametric amplifier (OPA). Phase-only modulation is applied by an acousto-optic programmable dispersion filter. This simple scheme is scalable to a high average power due to a relatively broad bandwidth of the Yb:CaF(2) gain medium used in the amplifier that supports a sub-150-fs transform-limited pulse duration. Additionally we show that OPA seeding with supercontinuum remains possible because top-hat-shaped pulses passed through a glass block recompress to ≈200 fs with minimum satellite production.


Assuntos
Lasers de Estado Sólido , Fenômenos Ópticos , Itérbio , Análise Espectral
7.
Opt Lett ; 36(10): 1914-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593933

RESUMO

Here, 200 fs 6 mJ pulses from a cw diode-pumped Yb,Na:CaF(2) amplifier are spectrally broadened in an Ar- or Ne-filled hollow-core fiber and recompressed to 20 fs (Ar) and 35 fs (Ne) using a prism pair. The results of spectral broadening and phase measurement are in excellent agreement with numerical modeling based on the generalized nonlinear Schrödinger equation. The longer laser wavelength of 1030 nm permits favorable energy scaling for the hollow-fiber technique compared to ultrafast amplifiers operating at 800 nm.

8.
Sci Rep ; 5: 8368, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687621

RESUMO

Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 µm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared.

9.
Opt Lett ; 34(13): 2075-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19572004

RESUMO

Using a novel (to our knowledge) broadband Yb-doped Yb3+,Na+:CaF2 crystal cooled in a closed loop to 130 K we demonstrate a chirped pulse regenerative laser amplifier delivering the energy of up to 3 mJ at a repetition rate of 1 kHz and an average output power of 6 W at 20 kHz. The gain narrowing in the laser crystal is compensated by shaping the amplitude of the seed pulse spectrum. As the result, at the highest amplified pulse energy we obtain a 12 nm FWHM bandwidth supporting a 130 fs pulse duration, assuming ideal compression. Amplified pulses were recompressed from 250 ps to 195 fs with a 1700 lines/mm transmission grating compressor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA