Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(11): 1467, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32884131

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
J Immunol ; 210(4): 408-419, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548474

RESUMO

Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Células Endoteliais/patologia , Arginase/genética , Encéfalo/patologia , Macrófagos , Endotélio/patologia , Proliferação de Células
3.
Clin Infect Dis ; 78(4): 1033-1042, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947190

RESUMO

BACKGROUND: Currently, there is no effective treatment for adult-onset immunodeficiency (AOID) syndrome with anti-interferon-gamma autoantibodies (anti-IFN-γ-auto-Abs). This study aimed to investigate the effectiveness of bortezomib (BTZ) for decreasing anti-IFN-γ-auto-Abs. METHODS: A pre- and post-intervention study was conducted from February 2017 through June 2019 at Siriraj Hospital (Bangkok, Thailand). Five patients were invited to receive once-weekly BTZ (1.3 mg/m2 body surface area) subcutaneously for 8 weeks followed by oral cyclophosphamide (1 mg/kg/d) for 4 months. The primary outcomes were the difference in antibody level at 8 and 48 weeks compared with baseline and the incidence of serious adverse events (AEs). The secondary outcome was the occurrence of opportunistic infections (OIs) during the 72 weeks after starting BTZ. RESULTS: The median patient age was 46 years (range, 34-53). All patients had 3-5 OIs prior to enrollment. All patients were receiving antimycobacterial agents for treatment of nontuberculous mycobacterial infection at enrollment. There was no significant difference in the mean optical density of auto-Abs at 8 weeks (3.73 ± 0.72) or 48 weeks (3.74 ± 0.53) compared with baseline (3.84 ± 0.49; P = .336 and P = .555, respectively). However, after serum dilution, the antibody titer nonsignificantly decreased 8-16 weeks after BTZ initiation (P = .345). Ten OIs were observed 24-72 weeks after BTZ initiation. CONCLUSIONS: Treatment with BTZ followed by cyclophosphamide yielded no significant decrease in antibody titer levels, and 10 OIs were observed during 24-72 weeks of BTZ treatment. No serious AEs were observed. Combining rituximab with BTZ is likely necessary to prevent generation of new autoantibody-producing plasma cells. Clinical Trials Registration. NCT03103555.


Assuntos
Autoanticorpos , Síndromes de Imunodeficiência , Adulto , Humanos , Pessoa de Meia-Idade , Bortezomib/efeitos adversos , Tailândia , Interferon gama , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/complicações , Ciclofosfamida/uso terapêutico
4.
Immunity ; 42(4): 692-703, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25888259

RESUMO

The interleukin-17 (IL-17) family of cytokines has emerged as a critical player in inflammatory diseases. Among them, IL-25 has been shown to be important in allergic inflammation and protection against parasitic infection. Here we have demonstrated that IL-17B, a poorly understood cytokine, functions to inhibit IL-25-driven inflammation. IL-17B and IL-25, both binding to the interleukin-17 receptor B (IL-17RB), were upregulated in their expression after acute colonic inflammation. Individual inhibition of these cytokines revealed opposing functions in colon inflammation: IL-25 was pathogenic but IL-17B was protective. Similarly opposing phenotypes were observed in Citrobacter rodentium infection and allergic asthma. Moreover, IL-25 was found to promote IL-6 production from colon epithelial cells, which was inhibited by IL-17B. Therefore, our data demonstrate that IL-17B is an anti-inflammatory cytokine in the IL-17 family.


Assuntos
Asma/imunologia , Colite/imunologia , Disbiose/imunologia , Infecções por Enterobacteriaceae/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Animais , Antibacterianos , Asma/induzido quimicamente , Asma/genética , Asma/patologia , Linhagem Celular , Citrobacter rodentium/imunologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Disbiose/induzido quimicamente , Disbiose/genética , Disbiose/patologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/deficiência , Interleucinas/genética , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Ligação Proteica , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Transdução de Sinais , Dodecilsulfato de Sódio
5.
J Immunol ; 207(8): 2107-2117, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526375

RESUMO

A multifunctional glycoprotein, osteopontin (OPN), can modulate the function of macrophages, resulting in either protective or deleterious effects in various inflammatory diseases and infection in the lungs. Although macrophages play the critical roles in mediating host defenses against cryptococcosis or cryptococcal pathogenesis, the involvement of macrophage-derived OPN in pulmonary infection caused by fungus Cryptococcus has not been elucidated. Thus, our current study aimed to investigate the contribution of OPN to the regulation of host immune response and macrophage function using a mouse model of pulmonary cryptococcosis. We found that OPN was predominantly expressed in alveolar macrophages during C. neoformans infection. Systemic treatment of OPN during C. neoformans infection resulted in an enhanced pulmonary fungal load and an early onset of type 2 inflammation within the lung, as indicated by the increase of pulmonary eosinophil infiltration, type 2 cytokine production, and M2-associated gene expression. Moreover, CRISPR/Cas9-mediated OPN knockout murine macrophages had enhanced ability to clear the intracellular fungus and altered macrophage phenotype from pathogenic M2 to protective M1. Altogether, our data suggested that macrophage-derived OPN contributes to the elaboration of C. neoformans-induced type 2 immune responses and polarization of M2s that promote fungal survival and proliferation within macrophages.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/fisiologia , Eosinófilos/imunologia , Pulmão/patologia , Macrófagos/imunologia , Osteopontina/metabolismo , Células Th2/imunologia , Animais , Diferenciação Celular , Processos de Crescimento Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Osteopontina/genética , Equilíbrio Th1-Th2
6.
Nat Immunol ; 11(3): 250-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20154671

RESUMO

The physiological regulation of the expression of interleukin (IL)-9, a cytokine traditionally regarded as being T(H)2 associated, remains unclear. Here, we show that IL-9-expressing T cells generated in vitro in the presence of transforming growth factor-beta and IL-4 express high levels of mRNA for IL-17 receptor B (IL-17RB), the receptor for IL-25. Treatment of these cells with IL-25 enhances IL-9 expression in vitro. Moreover, transgenic and retroviral overexpression of IL-17RB in T cells results in IL-25-induced IL-9 production that is IL-4 independent. In vivo, the IL-25-IL-17RB pathway regulates IL-9 expression in allergic airway inflammation. Thus, IL-25 is a newly identified regulator of IL-9 expression.


Assuntos
Hiper-Reatividade Brônquica/imunologia , Interleucina-9/biossíntese , Interleucinas/metabolismo , Linfócitos T/imunologia , Animais , Hiper-Reatividade Brônquica/genética , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interleucina-9/genética , Interleucina-9/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
7.
Inflamm Res ; 71(10-11): 1229-1244, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35819460

RESUMO

OBJECTIVE: This study aimed to investigate the direct role of IL-25 in modulating adipocyte function during homeostasis and low-grade inflammation induced by lipopolysaccharide (LPS). METHODS: The 3T3-L1 preadipocyte cell lines and primary cultures of adipose-derived stromal vascular precursor cells of wild-type and IL-17RB-deficient mice were used to determine the direct function of IL-25. The expression of IL-17RB in differentiating adipocyte was determined using real-time PCR and flow cytometry analysis. The effect of IL-25 on lipid accumulation, triglyceride content, lipolysis, glucose uptake, and adipokine expression in the mature adipocytes was evaluated. IL-25 modulating the expression of inflammatory cytokines in adipocytes induced by low dose LPS was determined using real-time PCR and ELISA. RESULTS: The receptor for IL-25 was up-regulated during adipocyte differentiation and IL-25 directly modulated adipocyte function by reducing lipid accumulation and triglyceride concentration and enhancing lipolysis without affecting an insulin-stimulated glucose uptake. Interestingly, IL-25 induced adiponectin secretion through the PI3K/AKT signaling pathway. In 3T3-L1 adipocytes under low-grade inflammation, IL-25 attenuated the expression of IL-6 and CCL5 through the induction of adiponectin. CONCLUSION: Our studies suggest that IL-25 directly regulates adipocyte function by maintaining the adiponectin level during homeostasis and by alleviating inflammatory response through the regulation of adiponectin during low-grade inflammation in adipocytes.


Assuntos
Adiponectina , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Adiponectina/genética , Adiponectina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Adipócitos/metabolismo , Células 3T3-L1 , Inflamação/metabolismo , Diferenciação Celular , Glucose/farmacologia , Triglicerídeos/metabolismo
8.
J Immunol ; 205(3): 674-685, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561567

RESUMO

Cryptococcal meningitis is one of the most common life-threatening diseases caused by Cryptococcus infection. Increasing evidence indicates that type 2 immunity is associated with disease progression by promoting fungal growth and dissemination. However, factors that govern this pathogenic response during infection are still elusive. In this study, we investigated the role of IL-25, one of the type 2-inducing cytokines produced by epithelial cells, in contributing to the pathogenesis of cryptococcosis. We found that pulmonary but not systemic infection with a high-virulence strain of C. neoformans significantly induced pulmonary IL-25 expression in the lungs but not brains. In response to pulmonary infection, mice deficient in the surface IL-17 receptor B, a component of the IL-25R, exhibited improved survival with a decreased brain fungal burden. The absence of IL-25R signaling diminished the type 2 and enhanced the type 1 immune response that directed macrophage polarization toward M1 macrophages. Interestingly, Cryptococcus-mediated IL-25 signaling suppressed the expression of cytokines and chemokines associated with protection in the brain, including Ifng, Il1b, Ip10, and Nos2, without affecting brain cellular inflammation and microglia cell activation. Il17rb-/- mice receiving cryptococcal-specific CD4+ T cells from wild-type had a shorter survival time with higher fungal burden within the brain and an elevated expression of M2 macrophage markers than those receiving cryptococcal-specific CD4+ T cells from Il17rb-/- mice. Taken together, our data indicated that IL-25 signaling subverts the induction of protective immunity and amplifies the type 2 immune response that may favor the development of cryptococcal disease and the fungal dissemination to the CNS.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/imunologia , Macrófagos/imunologia , Receptores de Interleucina/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Citocinas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/imunologia
9.
Nat Immunol ; 10(12): 1260-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19881507

RESUMO

How naive CD4(+) T cells commit to the T helper type 2 (T(H)2) lineage is poorly understood. Here we show that the basic helix-loop-helix transcription factor Dec2 was selectively expressed in T(H)2 cells. CD4(+) T cells from Dec2-deficient mice showed defective T(H)2 differentiation in vitro and in vivo in an asthma model and in response to challenge with a parasite antigen. Dec2 promoted expression of interleukin 4 (IL-4), IL-5 and IL-13 during early T(H)2 differentiation and directly bound to and activated transcription of genes encoding the transcription factors JunB and GATA-3. As GATA-3 induces Dec2 expression, our findings also indicate a feed-forward regulatory circuit during T(H)2 differentiation.


Assuntos
Linhagem da Célula , Células Th2/citologia , Células Th2/imunologia , Fatores de Transcrição/imunologia , Animais , Asma/imunologia , Asma/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Fator de Transcrição GATA3/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células Th2/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
10.
Nat Immunol ; 10(5): 496-503, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19329997

RESUMO

The innate immune response of airway epithelial cells to airborne allergens initiates the development of T cell responses that are central to allergic inflammation. Although proteinase allergens induce the expression of interleukin 25, we show here that epithelial matrix metalloproteinase 7 (MMP7) was expressed during asthma and was required for the maximum activity of interleukin 25 in promoting the differentiation of T helper type 2 cells. Allergen-challenged Mmp7(-/-) mice had less airway hyper-reactivity and production of allergic inflammatory cytokines and higher expression of retinal dehydrogenase 1. Inhibition of retinal dehydrogenase 1 restored the asthma phenotype of Mmp7(-/-) mice and inhibited the responses of lung regulatory T cells, whereas exogenous administration of retinoic acid attenuated the asthma phenotype. Thus, MMP7 coordinates allergic lung inflammation by activating interleukin 25 while simultaneously inhibiting retinoid-dependent development of regulatory T cells.


Assuntos
Asma/metabolismo , Interleucinas/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Mucosa Respiratória/metabolismo , Tretinoína/metabolismo , Alérgenos/imunologia , Animais , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Diferenciação Celular/imunologia , Cromatografia Líquida de Alta Pressão , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Humanos , Imuno-Histoquímica , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Metaloproteinase 7 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Mucosa Respiratória/imunologia , Retinal Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th2/citologia , Células Th2/imunologia , Tretinoína/imunologia
11.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31871099

RESUMO

Cryptococcosis is an infectious disease caused by two fungal species, Cryptococcus neoformans and Cryptococcus gattii While C. neoformans affects mainly immunocompromised patients, C. gattii infects both immunocompetent and immunocompromised individuals. Laccase is an important virulence factor that contributes to the virulence of C. neoformans by promoting pulmonary growth and dissemination to the brain. The presence of laccase in C. neoformans can shift the host immune response toward a nonprotective Th2-type response. However, the role of laccase in the immune response against C. gattii remains unclear. In this study, we characterized laccase activity in C. neoformans and C. gattii isolates from Thailand and investigated whether C. gattii that is deficient in laccase might modulate immune responses during infection. C. gattii was found to have higher laccase activity than C. neoformans, indicating the importance of laccase in the pathogenesis of C. gattii infection. The expression of laccase promoted intracellular proliferation in macrophages and inhibited in vitro fungal clearance. Mice infected with a lac1Δ mutant strain of C. gattii had reduced lung burdens at the early but not the late stage of infection. Without affecting type-1 and type-2 responses, the deficiency of laccase in C. gattii induced cryptococcus-specific interleukin-17 (IL-17) cytokine, neutrophil accumulation, and expression of the neutrophil-associated cytokine gene Csf3 and chemokine genes Cxcl1, Cxcl2, and Cxcl5 in vivo, as well as enhanced neutrophil-mediated phagocytosis and killing in vitro Thus, our data suggest that laccase constitutes an important virulence factor of C. gattii that plays roles in attenuating Th17-type immunity, neutrophil recruitment, and function during the early stage of infection.


Assuntos
Criptococose , Cryptococcus gattii/imunologia , Cryptococcus neoformans/imunologia , Lacase/metabolismo , Animais , Proliferação de Células , Quimiocinas/metabolismo , Criptococose/imunologia , Criptococose/metabolismo , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Citocinas/metabolismo , Macrófagos/imunologia , Camundongos , Neutrófilos/metabolismo , Virulência/imunologia , Fatores de Virulência/metabolismo
12.
Mol Cell ; 45(2): 210-21, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284677

RESUMO

Small ubiquitin-like modifier (SUMO) modification has emerged as an important regulatory mechanism during embryonic development. However, it is not known whether SUMOylation plays a role in the development of the immune system. Here, we show that SUMO-specific protease 1 (SENP1) is essential for the development of early T and B cells. STAT5, a key regulator of lymphoid development, is modified by SUMO-2 and is specifically regulated by SENP1. In the absence of SENP1, SUMO-2 modified STAT5 accumulates in early lymphoid precursors, resulting in a block in its acetylation and subsequent signaling. These results demonstrate a crucial role of SENP1 in the regulation of STAT5 activation during early lymphoid development.


Assuntos
Linfócitos B/citologia , Endopeptidases/fisiologia , Fator de Transcrição STAT5/metabolismo , Linfócitos T/citologia , Animais , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Diferenciação Celular/genética , Cisteína Endopeptidases , Endopeptidases/genética , Endopeptidases/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/metabolismo , Fator de Transcrição STAT5/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Linfócitos T/metabolismo , Linfócitos T/fisiologia
13.
Curr Allergy Asthma Rep ; 19(5): 29, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30915580

RESUMO

PURPOSES OF REVIEW: Th9 cells are recognized as a novel subset of effector T helper cells that preferentially produce IL-9. Here, we provide a current update on the reports related to the function of Th9 cells in allergic inflammatory diseases. RECENT FINDINGS: The effector Th9 cells differentiating from naïve T helper cells have recently been identified. Because of accumulating findings of Th9 cells in many inflammatory diseases, including allergic diseases, diverse functions of Th9 cells in regulating immune responses have been suggested. Related reports indicate multiple sources of IL-9 besides Th9 cells and their association with the pathogenesis of allergic rhinitis, asthma, atopic dermatitis, contact dermatitis, and food allergy. More recently, elements of the epigenetic landscape involving in the regulation of IL-9 by Th9 cells have been identified to be the potential target for allergic inflammation. This review provides the most recent information about Th9 cells and their contribution in airway allergic disease, skin, and food allergy.


Assuntos
Interleucina-9/imunologia , Rinite Alérgica/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Humanos
14.
J Allergy Clin Immunol ; 137(4): 1216-1225.e5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26560039

RESUMO

BACKGROUND: Food-mediated allergic reactions have emerged as a major health problem. The underlying mechanisms that promote uncontrolled type 2 immune responses to dietary allergens in the gastrointestinal tract remain elusive. OBJECTIVE: We investigated whether altering IL-25 signaling enhances or attenuates allergic responses to food allergens. METHODS: Mice of an IL-25 transgenic mouse line (iIL-25Tg mice), which constitutively overexpress intestinal IL-25, and Il17rb(-/-) mice, in which Il17rb gene expression is disrupted, were sensitized and gavage fed with ovalbumin (OVA). We assessed symptomatic characteristics of experimental food allergy, including incidence of diarrhea, incidence of hypothermia, intestinal TH2 immune response, and serum OVA-specific IgE and mast cell protease 1 production. RESULTS: Rapid induction of Il25 expression in the intestinal epithelium preceded onset of the anaphylactic response to ingested OVA antigen. iIL-25Tg mice were more prone and Il17rb(-/-) mice were more resistant to experimental food allergy. Resident intestinal type 2 innate lymphoid cells (ILC2s) were identified as the major producers of IL-5 and IL-13 in response to IL-25. Reconstituting irradiated wild-type mice with Rora(-/-) or Il17rb(-/-) bone marrow resulted in a deficiency or dysfunction of the ILC2 compartment, respectively, and resistance to experimental food allergy. Repeated intragastric antigen challenge induced a significant increase in numbers of CD4(+) TH2 cells, which enhance IL-25-stimulated IL-13 production by ILC2s ex vivo and in vivo. Finally, reconstituted IL-13-deficient ILC2s had reduced capability to promote allergic inflammation, resulting in increased resistance to experimental food allergy. CONCLUSION: IL-25 and CD4(+) TH2 cells induced by ingested antigens enhance ILC2-derived IL-13 production, thereby promoting IgE-mediated experimental food allergy.


Assuntos
Hipersensibilidade a Ovo/imunologia , Imunoglobulina E/imunologia , Interleucina-13/imunologia , Interleucinas/imunologia , Ovalbumina/imunologia , Células Th2/imunologia , Animais , Biomarcadores/metabolismo , Camundongos , Camundongos Transgênicos
15.
Infect Immun ; 82(9): 3880-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980974

RESUMO

Cryptococcal infections are primarily caused by two related fungal species: Cryptococcus neoformans and Cryptococcus gattii. It is well known that C. neoformans generally affects immunocompromised hosts; however, C. gattii infection can cause diseases in not only immunocompromised hosts but also immunocompetent individuals. While recent studies suggest that C. gattii infection could dampen pulmonary neutrophil recruitment and inflammatory cytokine production in immunocompetent hosts, the impact of C. gattii infection on the development of their adaptive T helper cell immune response has not been addressed. Here, we report that C. neoformans infection with highly virulent and less virulent strains preferentially induced pulmonary Th1 and Th17 immune responses in the host, respectively. However, fewer pulmonary Th1 and Th17 cells could be detected in mice infected with C. gattii strains. Notably, dendritic cells (DC) in mice infected with C. gattii expressed much lower levels of surface MHC-II and Il12 or Il23 transcripts and failed to induce effective Th1 and Th17 differentiation in vitro. Furthermore, the expression levels of Ip10 and Cxcl9 transcripts, encoding Th1-attracting chemokines, were significantly reduced in the lungs of mice infected with the highly virulent C. gattii strain. Thus, our data suggest that C. gattii infection dampens the DC-mediated effective Th1/Th17 immune responses and downregulates the pulmonary chemokine expression, thus resulting in the inability to mount protective immunity in immunocompetent hosts.


Assuntos
Quimiocinas/imunologia , Criptococose/imunologia , Cryptococcus gattii/imunologia , Células Dendríticas/imunologia , Pulmão/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Criptococose/microbiologia , Células Dendríticas/microbiologia , Regulação para Baixo/imunologia , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/microbiologia , Células Th17/microbiologia
16.
Curr Protoc ; 4(3): e1001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456766

RESUMO

Cryptococcus is recognized as one of the emerging fungal pathogens that have major impact on diverse populations worldwide. Because of the high mortality rate and limited antifungal therapy options, there is an urgent need to understand the impact of dynamic processes between fungal pathogens and hosts that influence cryptococcal pathogenesis and disease outcomes. With known common limitations in human studies, experimental murine cryptococcosis models that can recapitulate human disease provide a valuable tool for studying fungal virulence and the host interaction, leading to development of better treatment strategies. Infection with Cryptococcus in mice via intranasal inhalation is mostly used because it is noninvasive and considered to be the most common mode of infection, strongly correlating with cryptococcal disease in humans. The protocols described in this article provide the procedures of establishing a murine model of Cryptococcus infection by intranasal inhalation and assessing the host immune response and disease progression during Cryptococcus infection. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Murine model of pulmonary cryptococcal infection via intranasal inhalation Basic Protocol 2: Assessment of the pulmonary immune response during Cryptococcus infection Support Protocol: Evaluation of pulmonary gene expression by real-time PCR Basic Protocol 3: Enumeration of survival rate and organ fungal burden.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Animais , Camundongos , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Criptococose/microbiologia , Criptococose/patologia , Pulmão/microbiologia , Pulmão/patologia
17.
Int Immunopharmacol ; 132: 111995, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581993

RESUMO

Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.


Assuntos
Arginase , Arginina/análogos & derivados , Criptococose , Cryptococcus neoformans , Camundongos Endogâmicos C57BL , Animais , Arginase/metabolismo , Arginase/antagonistas & inibidores , Arginase/genética , Criptococose/imunologia , Criptococose/tratamento farmacológico , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/efeitos dos fármacos , Camundongos , Pulmão/imunologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/imunologia , Feminino , Modelos Animais de Doenças , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/tratamento farmacológico , Humanos , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
18.
Infect Immun ; 81(10): 3731-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897610

RESUMO

Mammalian hosts often develop distinct immune response against the diverse parasitic helminths that have evolved for immune evasion. Interleukin-25 (IL-25), an IL-17 cytokine family member, plays a key role in initiating the protective immunity against several parasitic helminths; however, the involvement and underlying mechanisms by which IL-25 mediates immune response against Trichinella spiralis infection have not been investigated. Here we showed that IL-25 functions in promoting protective immunity against T. spiralis infection. Mice treated with IL-25 exhibited a lower worm burden and fewer muscle larvae in the later stage of T. spiralis infection. In contrast, mice treated with neutralizing antibody against IL-25 failed to expel T. spiralis effectively. During T. spiralis infection, intestinal IL-25 expression was rapidly elevated before the onset of IL-4 and IL-9 induction. While antigen-specific Th2 and Th9 immune responses were both developed during T. spiralis infection, an antigen-specific Th9 response appeared to be transiently induced in the early stage of infection. Mice into which antigen-specific T cells deficient in IL-9 were transferred were less effective in worm clearance than those given wild-type T cells. The strength of the antigen-specific Th9 immune response against T. spiralis could be enhanced or attenuated after treatment with IL-25 or neutralizing antibody against IL-25, respectively, correlating positively with the levels of intestinal mastocytosis and the expression of IL-9-regulated genes, including mast cell- and Paneth cell-specific genes. Thus, our study demonstrates that intestinal IL-25 promotes protective immunity against T. spiralis infection by inducing antigen-specific Th9 immune response.


Assuntos
Antígenos de Helmintos/imunologia , Interleucina-9/metabolismo , Interleucinas/farmacologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Interleucina-9/genética , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/classificação , Linfócitos T/metabolismo , Fatores de Tempo , Triquinelose/metabolismo
19.
J Exp Med ; 204(7): 1509-17, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-17562814

RESUMO

The molecular mechanisms underlying the initiation of innate and adaptive proallergic type 2 responses are not understood. Interleukin (IL) 25, a member of the IL-17 cytokine family, was recently reported (Owyang, A.M., C. Zaph, E.H. Wilson, K.J. Guild, T. McClanahan, H.R. Miller, D.J. Cua, M. Goldschmidt, C.A. Hunter, R.A. Kastelein, and D. Artis. 2006. J. Exp. Med. 203:843-849; Fallon, P.G., S.J. Ballantyne, N.E. Mangan, J.L. Barlow, A. Dasvarma, D.R. Hewett, A. McIlgorm, H.E. Jolin, and A.N. McKenzie. 2006. J. Exp. Med. 203:1105-1116) to be important in Th2 cell-mediated immunity to parasitic infection. However, the cellular source and targets of IL-25 are not well understood. We show that mouse IL-25 is expressed by lung epithelial cells as a result of innate immune responses to allergens. Transgenic overexpression of IL-25 by these cells leads to mucus production and airway infiltration of macrophages and eosinophils, whereas blockade of IL-25 conversely reduces the airway inflammation and Th2 cytokine production in an allergen-induced asthma model. In addition, IL-25, with a receptor more highly expressed in Th2 than other effector T cells, promotes Th2 cell differentiation in an IL-4- and signal transducer and activator of transcription 6-dependent manner. During early T cell activation, IL-25 potentiates expression of the nuclear factor of activated T cells c1 and JunB transcription factors, which possibly results in increased levels of initial IL-4 production, up-regulation of GATA-3 expression, and enhanced Th2 cell differentiation. Thus, IL-25 is a critical factor regulating the initiation of innate and adaptive proallergic responses.


Assuntos
Alérgenos , Hipersensibilidade/imunologia , Interleucina-17/imunologia , Animais , Asma/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunidade Celular , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/imunologia , Células Th2/imunologia
20.
J Exp Med ; 204(8): 1837-47, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17635955

RESUMO

Interleukin (IL) 25 (IL-17E), a distinct member of the IL-17 cytokine family, plays important roles in evoking T helper type 2 (Th2) cell-mediated inflammation that features the infiltrations of eosinophils and Th2 memory cells. However, the cellular sources, target cells, and underlying mechanisms remain elusive in humans. We demonstrate that human Th2 memory cells expressing distinctive levels of IL-25 receptor (R) are one of the responding cell types. IL-25 promotes cell expansion and Th2 cytokine production when Th2 central memory cells are stimulated with thymic stromal lymphopoietin (TSLP)-activated dendritic cells (DCs), homeostatic cytokines, or T cell receptor for antigen triggering. The enhanced functions of Th2 memory cells induced by IL-25 are associated with sustained expression of GATA-3, c-MAF, and JunB in an IL-4-independent manner. Although keratinocytes, mast cells, eosinophils, and basophils express IL-25 transcripts, activated eosinophils and basophils from normal and atopic subjects were found to secrete bioactive IL-25 protein, which augments the functions of Th2 memory cells. Elevated expression of IL-25 and IL-25R transcripts was observed in asthmatic lung tissues and atopic dermatitis skin lesions, linking their possible roles with exacerbated allergic disorders. Our results provide a plausible explanation that IL-25 produced by innate effector eosinophils and basophils may augment the allergic inflammation by enhancing the maintenance and functions of adaptive Th2 memory cells.


Assuntos
Citocinas/metabolismo , Sistema Imunitário , Interleucina-17/fisiologia , Células Th2/imunologia , Proliferação de Células , Células Dendríticas/metabolismo , Eosinófilos/metabolismo , Fator de Transcrição GATA3/metabolismo , Humanos , Hipersensibilidade/metabolismo , Memória Imunológica , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Células Th2/metabolismo , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA