Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 270, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592318

RESUMO

BACKGROUND: Implant infections caused by biofilm forming bacteria are a major threat in orthopedic surgery. Delivering antibiotics directly to an implant affected by a bacterial biofilm via superparamagnetic nanoporous silica nanoparticles could present a promising approach. Nevertheless, short blood circulation half-life because of rapid interactions of nanoparticles with the host's immune system hinder them from being clinically used. The aim of this study was to determine the temporal in vivo resolution of magnetic nanoporous silica nanoparticle (MNPSNP) distribution and the effect of PEGylation and clodronate application using PET/CT imaging and gamma counting in an implant mouse model. METHODS: PEGylated and non-PEGylated MNPSNPs were radiolabeled with gallium-68 (68Ga), implementing the chelator tris(hydroxypyridinone). 36 mice were included in the study, 24 mice received a magnetic implant subcutaneously on the left and a titanium implant on the right hind leg. MNPSNP pharmacokinetics and implant accumulation was analyzed in dependence on PEGylation and additional clodronate application. Subsequently gamma counting was performed for further final analysis. RESULTS: The pharmacokinetics and biodistribution of all radiolabeled nanoparticles could clearly be visualized and followed by dynamic PET/CT imaging. Both variants of 68Ga-labeled MNPSNP accumulated mainly in liver and spleen. PEGylation of the nanoparticles already resulted in lower liver uptakes. Combination with macrophage depletion led to a highly significant effect whereas macrophage depletion alone could not reveal significant differences. Although MNPSNP accumulation around implants was low in comparison to the inner organs in PET/CT imaging, gamma counting displayed a significantly higher %I.D./g for the tissue surrounding the magnetic implants compared to the titanium control. Additional PEGylation and/or macrophage depletion revealed no significant differences regarding nanoparticle accumulation at the implantation site. CONCLUSION: Tracking of 68Ga-labeled nanoparticles in a mouse model in the first critical hours post-injection by PET/CT imaging provided a better understanding of MNPSNP distribution, elimination and accumulation. Although PEGylation increases circulation time, nanoparticle accumulation at the implantation site was still insufficient for infection treatment and additional efforts are needed to increase local accumulation.


Assuntos
Nanoporos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Camundongos , Ácido Clodrônico , Radioisótopos de Gálio , Distribuição Tecidual , Titânio , Modelos Animais de Doenças , Fenômenos Magnéticos
2.
Eur Surg Res ; 64(1): 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35843208

RESUMO

INTRODUCTION: Sheep are frequently used in translational surgical orthopedic studies. Naturally, a good pain management is mandatory for animal welfare, although it is also important with regard to data quality. However, methods for adequate severity assessment, especially considering pain, are rather rare regarding large animal models. Therefore, in the present study, accompanying a surgical pilot study, telemetry and the Sheep Grimace Scale (SGS) were used in addition to clinical scoring for severity assessment after surgical interventions in sheep. METHODS: Telemetric devices were implanted in a first surgery subcutaneously into four German black-headed mutton ewes (4-5 years, 77-115 kg). After 3-4 weeks of recovery, sheep underwent tendon ablation of the left M. infraspinatus. Clinical scoring and video recordings for SGS analysis were performed after both surgeries, and the heart rate (HR) and general activity were monitored by telemetry. RESULTS: Immediately after surgery, clinical score and HR were slightly increased, and activity was decreased in individual sheep after both surgeries. The SGS mildly elevated directly after transmitter implantation but increased to higher levels after tendon ablation immediately after surgery and on the following day. CONCLUSION: In summary, SGS- and telemetry-derived data were suitable to detect postoperative pain in sheep with the potential to improve individual pain recognition and postoperative management, which consequently contributes to refinement.


Assuntos
Procedimentos Ortopédicos , Dor , Telemetria , Animais , Feminino , Modelos Animais , Projetos Piloto , Próteses e Implantes , Ovinos , Procedimentos Ortopédicos/veterinária
3.
J Nanobiotechnology ; 18(1): 14, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941495

RESUMO

BACKGROUND: In orthopedics, the treatment of implant-associated infections represents a high challenge. Especially, potent antibacterial effects at implant surfaces can only be achieved by the use of high doses of antibiotics, and still often fail. Drug-loaded magnetic nanoparticles are very promising for local selective therapy, enabling lower systemic antibiotic doses and reducing adverse side effects. The idea of the following study was the local accumulation of such nanoparticles by an externally applied magnetic field combined with a magnetizable implant. The examination of the biodistribution of the nanoparticles, their effective accumulation at the implant and possible adverse side effects were the focus. In a BALB/c mouse model (n = 50) ferritic steel 1.4521 and Ti90Al6V4 (control) implants were inserted subcutaneously at the hindlimbs. Afterwards, magnetic nanoporous silica nanoparticles (MNPSNPs), modified with rhodamine B isothiocyanate and polyethylene glycol-silane (PEG), were administered intravenously. Directly/1/7/21/42 day(s) after subsequent application of a magnetic field gradient produced by an electromagnet, the nanoparticle biodistribution was evaluated by smear samples, histology and multiphoton microscopy of organs. Additionally, a pathohistological examination was performed. Accumulation on and around implants was evaluated by droplet samples and histology. RESULTS: Clinical and histological examinations showed no MNPSNP-associated changes in mice at all investigated time points. Although PEGylated, MNPSNPs were mainly trapped in lung, liver, and spleen. Over time, they showed two distributional patterns: early significant drops in blood, lung, and kidney and slow decreases in liver and spleen. The accumulation of MNPSNPs on the magnetizable implant and in its area was very low with no significant differences towards the control. CONCLUSION: Despite massive nanoparticle capture by the mononuclear phagocyte system, no significant pathomorphological alterations were found in affected organs. This shows good biocompatibility of MNPSNPs after intravenous administration. The organ uptake led to insufficient availability of MNPSNPs in the implant region. For that reason, among others, the nanoparticles did not achieve targeted accumulation in the desired way, manifesting future research need. However, with different conditions and dimensions in humans and further modifications of the nanoparticles, this principle should enable reaching magnetizable implant surfaces at any time in any body region for a therapeutic reason.


Assuntos
Portadores de Fármacos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Próteses e Implantes , Dióxido de Silício/química , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Feminino , Corantes Fluorescentes/química , Membro Posterior , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos BALB C , Ortopedia , Polietilenoglicóis/química , Porosidade , Rodaminas/química , Silanos/química , Distribuição Tecidual
4.
Nanomedicine ; 30: 102289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861030

RESUMO

Implant associated infections are still key problem in surgery. In the present study, the combination of a magnetic implant with administered magnetic nanoporous silica nanoparticles as potential drug carriers was examined in mice in dependence of local infection and macrophages as influencing factors. Four groups of mice (with and without implant infection and with and without macrophage depletion) received a magnet on the left and a titanium control on the right hind leg. Then, fluorescent nanoparticles were administered and particle accumulations at implant surfaces and in inner organs as well as local tissue reactions were analyzed. Magnetic nanoparticles could be found at the surfaces of magnetic implants in different amounts depending on the treatment groups and only rarely at titanium surfaces. Different interactions of magnetic implants, particles, infection and surrounding tissues occurred. The general principle of targeted accumulation of magnetic nanoparticles could be proven.


Assuntos
Grafite/administração & dosagem , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Próteses e Implantes , Análise Espectral Raman/métodos , Animais , Anidrase Carbônica IX/metabolismo , Cães , Endocitose , Citometria de Fluxo , Células Madin Darby de Rim Canino , Microscopia Confocal/métodos
5.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033294

RESUMO

Biological factors such as TGF-ß3 are possible supporters of the healing process in chronic rotator cuff tears. In the present study, electrospun chitosan coated polycaprolacton (CS-g-PCL) fibre scaffolds were loaded with TGF-ß3 and their effect on tendon healing was compared biomechanically and histologically to unloaded fibre scaffolds in a chronic tendon defect rat model. The biomechanical analysis revealed that tendon-bone constructs with unloaded scaffolds had significantly lower values for maximum force compared to native tendons. Tendon-bone constructs with TGF-ß3-loaded fibre scaffolds showed only slightly lower values. In histological evaluation minor differences could be observed. Both groups showed advanced fibre scaffold degradation driven partly by foreign body giant cell accumulation and high cellular numbers in the reconstructed area. Normal levels of neutrophils indicate that present mast cells mediated rather phagocytosis than inflammation. Fibrosis as sign of foreign body encapsulation and scar formation was only minorly present. In conclusion, TGF-ß3-loading of electrospun PCL fibre scaffolds resulted in more robust constructs without causing significant advantages on a cellular level. A deeper investigation with special focus on macrophages and foreign body giant cells interactions is one of the major foci in further investigations.


Assuntos
Poliésteres/química , Lesões do Manguito Rotador/terapia , Fator de Crescimento Transformador beta3/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Quitosana/química , Cicatriz/tratamento farmacológico , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Ratos , Manguito Rotador , Traumatismos dos Tendões/tratamento farmacológico , Tendões/efeitos dos fármacos , Alicerces Teciduais
6.
J Nanobiotechnology ; 16(1): 96, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482189

RESUMO

BACKGROUND: In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core-shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility. RESULTS: Spherical magnetic silica core-shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue. CONCLUSION: With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections.


Assuntos
Nanopartículas de Magnetita/química , Próteses e Implantes , Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Feminino , Células Hep G2 , Humanos , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanoporos
7.
Biomed Eng Online ; 14: 92, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481582

RESUMO

BACKGROUND: Magnesium alloys are recommended as a potential material for osteosynthesis. It is known that storage-induced property modifications can occur in materials like aluminum. Thus the aim of this study was to analyze the influence of storage durations of up to 48 weeks on the biomechanical, structural, and degradation properties of the degradable magnesium alloy LAE442. METHODS: Extruded implants (n = 104; Ø 2.5 mm × 25 mm) were investigated after storage periods of 0, 12, 24, and 48 weeks in three different sub-studies: (I) immediately after the respective storage duration and after an additional (II) 56 days of in vitro corrosion in simulated body fluid (SFB), and (III) 48 weeks in vivo corrosion in a rabbit model, respectively. In addition, the influence of a T5-heat treatment (206 °C for 15 h in an argon atmosphere) was tested (n = 26; 0 week of storage). Evaluation was performed by three-point bending, scanning electron microscopy, radiography, µ-computed tomography, evaluation of the mean grain size, and contrast analysis of precipitations (such as aluminum or lithium). RESULTS: The heat treatment induced a significant reduction in initial stability, and enhanced the corrosion resistance. In vivo experiments showed a good biocompatibility for all implants. During the storage of up to 48 weeks, no significant changes occurred in the implant properties. CONCLUSIONS: LAE442 implants can be safely used after up to 48 weeks of storage.


Assuntos
Temperatura Alta , Magnésio/química , Teste de Materiais , Fenômenos Mecânicos , Próteses e Implantes , Ligas/química , Animais , Fenômenos Biomecânicos , Magnésio/farmacologia , Período Pós-Operatório , Coelhos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/cirurgia , Fatores de Tempo , Microtomografia por Raio-X
8.
Bioact Mater ; 40: 366-377, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38978802

RESUMO

With its main features of cartilage degeneration, subchondral bone sclerosis and osteophyte formation, osteoarthritis represents a multifactorial disease with no effective treatment options. As biomechanical shift in the trabecular network may be a driver for further cartilage degeneration, bone enhancement could possibly delay OA progression. Magnesium is known to be osteoconductive and already showed positive effects in OA models. We aimed to use magnesium cylinders to enhance subchondral bone quality, condition of cartilage and pain sensation compared to sole drilling in vivo. After eight weeks of implantation in rabbits, significant increase in subchondral bone volume and trabecular thickness with constant bone mineral density was found indicating favored biomechanics. As representative for pain, a higher number of CD271+ vessels were present in control samples without magnesium. However, this result could not be confirmed by sensitive, objective lameness evaluation using a pressure sensing mat and no positive effect could be shown on either cartilage degeneration evaluated by OARSI score nor the presence of regenerative cells in CD271-stained samples. The presented results show a relevant impact of implanted magnesium on key structures in OA pain with missing clinical relevance regarding pain. Further studies with shifted focus should examine additional structures as joint capsule or osteophytes.

9.
J Nanobiotechnology ; 11: 34, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24112871

RESUMO

BACKGROUND: In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. RESULTS: The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. CONCLUSION: A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient.


Assuntos
Placas Ósseas , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Aço Inoxidável/química , Animais , Humanos , Campos Magnéticos , Imãs , Modelos Biológicos , Reologia
10.
J Mater Sci Mater Med ; 24(2): 417-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160911

RESUMO

Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 µm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 µm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo µ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The µCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.


Assuntos
Substitutos Ósseos , Transplante Ósseo/instrumentação , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis , Fluoretos/química , Magnésio/química , Implantes Absorvíveis , Ligas/síntese química , Ligas/química , Ligas/farmacologia , Animais , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/cirurgia , Implantes Experimentais , Teste de Materiais , Coelhos , Radiografia
11.
PLoS One ; 18(7): e0286918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418422

RESUMO

In orthopaedic research, the analysis of the gait pattern is an often-used evaluation method. It allows an assessment of changes in motion sequence and pain level during postoperative follow up periods. Visual assessments are highly subjective and dependent on the circumstances. Particular challenge in rabbits is their hopping gait pattern. The aim of the present study was to establish a more objective and sensitive lameness evaluation using a pressure sensing mat. Twelve NZW rabbits were implemented in the study. They got an artificial anterior cruciate ligament transection of the right knee in connection with an experimental study, which investigated PTOA treatment. Rabbits were examined by a visual lameness score. Additionally, load of the hindlimbs was measured by the use of a pressure sensing mat and a video was recorded. Peak pressure and time force integral, defined as cumulated integral of all sensors associated to a hind paw, were evaluated. Preoperative data were collected on three independent days. As postoperative measurement time points, week 1 and week 12 after surgery were chosen. The subjective visual scoring was compared to the objective data of the pressure sensing mat. Following the visual score, lameness in week one was mild to moderate. In week twelve, rabbits were evaluated as lame free bar one. Contrary, following the values of the sensor mat, lameness in week one appeared to be more pronounced and almost all rabbits still showed low-grade lameness in week twelve. Consequently, the pressure sensing mat is more sensitive than the visual score and captures the grade of lameness much more accurately. For specific orthopaedic issues, where subtle differences in lameness are important to detect, the used system is a good supplementary evaluation method.


Assuntos
Lagomorpha , Coxeadura Animal , Coelhos , Animais , Coxeadura Animal/diagnóstico , Fenômenos Biomecânicos , Marcha , Ligamento Cruzado Anterior
12.
BMC Vet Res ; 8: 173, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23006500

RESUMO

BACKGROUND: Recent studies reported on the very complex morphology of the pulp system in equine cheek teeth. The continuous production of secondary dentine leads to distinct age-related changes of the endodontic cavity. Detailed anatomical knowledge of the dental cavities in all ages is required to explain the aetiopathology of typical equine endodontic diseases. Furthermore, data on mandibular and maxillary pulp systems is in high demand to provide a basis for the development of endodontic therapies. However, until now examination of the pulp cavity has been based on either sectioned teeth or clinical computed tomography. More precise results were expected by using micro-computed tomography with a resolution of about 0.1 mm and three-dimensional reconstructions based on previous greyscale analyses and histological verification. The aim of the present study was to describe the physiological configurations of the pulp system within a wide spectrum of tooth ages. RESULTS: Maxillary teeth: All morphological constituents of the endodontic cavity were present in teeth between 4 and 16 years: Triadan 06s displayed six pulp horns and five root canals, Triadan 07-10s five pulp horns and four root canals and Triadan 11s seven pulp horns and four to six root canals. A common pulp chamber was most frequent in teeth ≤5 years, but was found even in a tooth of 9 years. A large variety of pulp configurations was observed within 2.5 and 16 years post eruption, but most commonly a separation into mesial and distal pulp compartments was seen. Maxillary cheek teeth showed up to four separate pulp compartments but the frequency of two, three and four pulp compartments was not related to tooth age (P > 0.05). In Triadan 06s, pulp horn 6 was always connected to pulp horns 1 and 3 and root canal I. In Triadan 11s, pulp horns 7 and 8 were present in variable constitutions. Mandibular teeth: A common pulp chamber was present in teeth up to 15 years, but most commonly seen in teeth ≤5 years. A segmented pulp system was found in 72% of the investigated teeth. Segmentation into separate mesial and distal pulp compartments was most commonly present. Pulp horn 4 coalesced either with the mesial pulp horns 1 and 3 or with the distal pulp horns 2 and 5. CONCLUSIONS: Details of the pulpar anatomy of equine cheek teeth are provided, supporting the continuous advancement in endodontic therapy. Numerous individual configurations of the pulp system were obtained in maxillary cheek teeth, but much less variability was seen in mandibular cheek teeth.


Assuntos
Cárie Dentária/veterinária , Doenças dos Cavalos/patologia , Dente/patologia , Microtomografia por Raio-X/veterinária , Animais , Cárie Dentária/patologia , Cavalos
13.
Acta Vet Scand ; 64(1): 37, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514178

RESUMO

With ongoing animal welfare efforts, multimodal analgesia is often recommended to implement in study protocols. Buprenorphine with very potent analgesic effect is a standard opioid for the use in this context in rats. In this study, two rat strains (LEW/NHanZtm, n = 6 and Crl:CD(SD), n = 8) underwent orthopaedic surgery and received carprofen, buprenorphine and a local anaesthetic in a multimodal setup. Crl:CD(SD) rats showed severe side effects in the first 24 h after anaesthesia, predominantly manifesting in pica-behaviour and reaching humane endpoints in two of eight animals, while LEW/NHanZtm rats showed only slight depression in the first postoperative days. In the context of improving animal welfare in experimental studies, buprenorphine is highly recommended not to be used in male Crl:CD(SD) rats and should generally be used very carefully and only if required.


Assuntos
Analgesia , Buprenorfina , Doenças dos Roedores , Ratos , Masculino , Animais , Buprenorfina/efeitos adversos , Analgésicos Opioides/efeitos adversos , Analgésicos/uso terapêutico , Analgesia/métodos , Analgesia/veterinária , Medição da Dor , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/veterinária
14.
J Funct Biomater ; 13(4)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36278629

RESUMO

Chronic tendon ruptures are common disorders in orthopedics. The conventional surgical methods used to treat them often require the support of implants. Due to the non-availability of suitable materials, 3D-printed polycaprolactone (PCL) scaffolds were designed from two different starting materials as suitable candidates for tendon-implant applications. For the characterization, mechanical testing was performed. To increase their biocompatibility, the PCL-scaffolds were plasma-treated and coated with fibronectin and collagen I. Cytocompatibility testing was performed using L929 mouse fibroblasts and human-bone-marrow-derived mesenchymal stem cells. The mechanical testing showed that the design adaptions enhanced the mechanical stability. Cell attachment was increased in the plasma-treated specimens compared to the control specimens, although not significantly, in the viability tests. Coating with fibronectin significantly increased the cellular viability compared to the untreated controls. Collagen I treatment showed an increasing trend. The desired cell alignment and spread between the pores of the construct was most prominent on the collagen-I-coated specimens. In conclusion, 3D-printed scaffolds are possible candidates for the development of tendon implants. Enhanced cytocompatibility was achieved through surface modifications. Although adaptions in mechanical strength still require alterations in order to be applied to human-tendon ruptures, we are optimistic that a suitable implant can be designed.

15.
Biomed Eng Online ; 10: 32, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521497

RESUMO

BACKGROUND: Magnesium alloys as biodegradable implant materials received much interest in recent years. It is known that products of implant degradation can induce several types of immune response. Hence, the aim of this study was to examine the morphological changes of efferent lymph nodes after implantation of different resorbable magnesium alloys (MgCa0.8, LAE442) in comparison to commercially available resorbable (PLA) and non-resorbable (titanium) implant materials as well as control groups without implant material. METHODS: The different implant materials were inserted intramedullary into the rabbit tibia. After postoperative observation periods of three and six months, popliteal lymph nodes were examined histologically and immunhistologically and compared to lymph nodes of sham operated animals and animals without surgery. Haematoxylin and eosin staining was performed for cell differentiation. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection, mouse anti-CD68 primary antibodies for macrophage detection. Evaluation of all sections was performed applying a semi quantitative score. RESULTS: The histological evaluation demonstrated low and moderate levels of morphological changes for both magnesium alloys (LAE442 and MgCa0.8). Higher than moderate values were reached for titanium in sinus histiocytosis and histiocytic apoptosis (3 months) and for PLA in histiocytic apoptosis (3 and 6 months). The immune response to all investigated implants had a non-specific character and predominantly was a foreign-body reaction. LAE442 provoked the lowest changes which might be due to a lower degradation rate in comparison to MgCa0.8. Therewith it is a promising candidate for implants with low immunogenic potential. CONCLUSION: Both examined magnesium alloys did not cause significantly increased morphological changes in efferent lymph nodes in comparison to the widely used implant materials titanium and PLA. LAE442 induced even lower immunological reactions. Therewith MgCa0.8 and especially LAE442 are appropriate candidates for biomedical use.


Assuntos
Implantes Absorvíveis/efeitos adversos , Ligas/efeitos adversos , Linfonodos/citologia , Magnésio/efeitos adversos , Animais , Apoptose/imunologia , Feminino , Histiócitos/citologia , Histiócitos/imunologia , Histiocitose Sinusal/imunologia , Histiocitose Sinusal/patologia , Imuno-Histoquímica , Linfonodos/imunologia , Linfonodos/patologia , Magnésio/imunologia , Coelhos
16.
Biomed Eng Online ; 9: 63, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20974008

RESUMO

BACKGROUND: Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. METHODS: A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel (S316L), as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. RESULTS: Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. CONCLUSIONS: Moderate inflammation was detected in both implant materials and resolved to a minimum during the first weeks indicating comparable biocompatibility for MgCa0.8 and S316L. Thus, the application of MgCa0.8 as biodegradable implant material seems conceivable. Since the inflammatory parameters were re-increasing at the end of the observation period in MgCa0.8 it is important to observe the development of inflammation over a longer time period in addition to the present study.


Assuntos
Ligas/efeitos adversos , Materiais Biocompatíveis , Cálcio/química , Cirurgia Geral/métodos , Magnésio/química , Teste de Materiais , Aço/efeitos adversos , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Parafusos Ósseos/efeitos adversos , Feminino , Inflamação/induzido quimicamente , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Coelhos , Radiografia , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
17.
J Tissue Eng Regen Med ; 14(1): 186-197, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670896

RESUMO

Acute and chronic rotator cuff tears remain challenging for therapy. A wide range of therapeutic approaches were developed but re-tears and postoperative complications occur regularly. Especially in elderly people, the natural regeneration processes are decelerated, and graft materials are often necessary to stabilize the tendon-to-bone attachment and to improve the healing process. We here investigated in a small animal model a newly developed electrospun polycaprolactone fiber implant coated with a chitosan-polycaprolactone graft copolymer and compared these implants biomechanically and histologically with either a commercially available porous polyurethane implant (Biomerix 3D Scaffold) or suture-fixed tendons. Fifty-one rats were divided into three groups of 17 animals each. In the first surgery, the left infraspinatus tendons of all rats were detached, and the animals recovered for 4 weeks. In the second surgery, the tendons were fixed with suture material only (suture-fixed group; n = 17), whereas in the two experimental groups, the tendons were fixed with suture material and the polyurethane implant (Biomerix scaffold group; n = 17) or the modified electrospun polycaprolactone fiber implant (CS-g-PCL scaffold group; n=17), respectively. The unaffected right infraspinatus tendons were used as native controls. After a recovery of 8 weeks, all animals were clinically inconspicuous. In 12 animals of each group, repaired entheses were biomechanically tested for force at failure, stiffness, and modulus of elasticity, and in five animals, repaired entheses were analyzed histologically. Biomechanically, all parameters did not differ statistically significant between both implant groups, and the entheses failed typically at the surgical site. However, with respect to the force at failure, the median values of the two implant groups were smaller than the median value of the suture-fixed group. Histologically, the modified polycaprolactone fiber implant showed no acute inflammation processes, a good infiltration with cells, ingrowth of blood vessels and tendinous tissue, and a normal fibrous ensheathment. Further improvement of the implant material could be achieved by additional implementation of drug delivery systems. Therewith, the used CS-g-PCL fiber mat is a promising basic material to reach the goal of a clinically usable graft for rotator cuff tear repair.


Assuntos
Quitosana/química , Eletroquímica/métodos , Poliésteres/química , Lesões do Manguito Rotador/cirurgia , Manguito Rotador/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Idoso , Animais , Fenômenos Biomecânicos , Humanos , Masculino , Teste de Materiais , Procedimentos Ortopédicos/métodos , Polímeros/química , Poliuretanos/química , Porosidade , Ratos , Ratos Endogâmicos Lew , Lesões do Manguito Rotador/patologia , Ruptura/patologia , Estresse Mecânico , Suturas , Tendões/patologia , Cicatrização
18.
J Trauma Acute Care Surg ; 85(2): 359-366, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29787542

RESUMO

BACKGROUND: Fracture and hemorrhagic shock often lead to impaired fracture healing. To elucidate underlying pathogenesis, this study aimed to analyze histological properties during fracture healing after hemorrhagic shock and involved signaling pathways in mice. METHODS: Male C57BL/6NCrl mice were assigned into five groups. Control group underwent no interventions. Sham group had a catheter and external fixator but neither blood loss nor osteotomy. Trauma-hemorrhage (TH) group received a pressure-controlled hemorrhagic shock; osteotomy (Fx) group, an osteotomy and fixator; and combined trauma (THFx) group, both hemorrhagic shock and externally fixed osteotomy. After 1, 2, 3, and 4 weeks, the animals were killed. Undecalcified bones were analyzed histologically and signaling pathways relevant for fracture healing by polymerase chain reaction and Western blot. Statistical significance was set at 0.05 or less. Comparisons were performed using the Mann-Whitney U or Kruskal-Wallis test. RESULTS: In the THFx group, a decreased bone formation after 3 weeks, a reduction of both bone and cartilage after 2 weeks, and an enhanced activation of the RANKL/OPG and IL6 signaling pathway after 1 week were shown in comparison to Fx. CONCLUSIONS: Hemorrhagic shock has a retarding effect on fracture healing in the early phase of fracture healing and leads to activation of the IL6 and RANKL/OPG signaling pathways.


Assuntos
Calo Ósseo/patologia , Fraturas Ósseas/terapia , Interleucina-6/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Choque Hemorrágico/terapia , Animais , Modelos Animais de Doenças , Consolidação da Fratura , Fraturas Ósseas/complicações , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoprotegerina/genética , Ligante RANK/genética , Choque Hemorrágico/complicações , Transdução de Sinais , Taxa de Sobrevida
19.
J Biomed Mater Res A ; 105(1): 329-347, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596336

RESUMO

The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 329-347, 2017.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Ligas/química , Ligas/uso terapêutico , Animais , Humanos , Magnésio/química , Magnésio/uso terapêutico
20.
Mater Sci Eng C Mater Biol Appl ; 49: 305-315, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686954

RESUMO

The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in µ-computed tomography (µCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study.


Assuntos
Ligas/metabolismo , Osso e Ossos/metabolismo , Implantes Absorvíveis , Animais , Placas Ósseas , Parafusos Ósseos , Corrosão , Fixação Interna de Fraturas/métodos , Hidrogênio/metabolismo , Magnésio/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA