Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Res Eur ; 1: 71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645209

RESUMO

One of the current goals of the European Commission is to stimulate the development and uptake of data and AI technologies in the economy. Earlier foundations of this work included initiatives to promote the publication of open data in the public domain. More recently, the Commission's attention has been shifting to open innovation programmes that help startups and small-medium enterprises (SMEs) to develop the capacity to engage with the latest technical and regulatory trends, and to share their data innovations with other organisations. In order to assess the efficacy and impact of such initiatives, each programme's specific social and economic objectives must be taken into consideration. As an example of how this can be done in practice, our paper presents the motivating objectives and methodological approaches that were used to assess the impact of the Data Market Services Accelerator (DMS), an EU-funded initiative for data-centric companies. We evaluated the performance of the programme in terms of its effect on the market, fundraising capabilities of companies, innovation, and socio-economic aspects. In addition to assessing how DMS was able to meet its intended objectives, our examination also underscored current challenges related to specific outcomes that are meaningful to the European Commission, including data standardisation and long-term legal strategy. We conclude the paper with a series of recommendations to support the impact assessment efforts of other similar innovation programmes.

2.
PLoS One ; 15(1): e0220019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945053

RESUMO

The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing. Here, we present a comprehensive, quantitative analysis of the role of cell-ECM interactions in cancer cell migration within a highly physiological environment consisting of mixed Matrigel-collagen hydrogel scaffolds of increasing complexity that mimic the tumor microenvironment at the leading edge of cancer invasion. We quantitatively show that the presence of Matrigel increases hydrogel stiffness, which promotes ß1 integrin expression and metalloproteinase activity in H1299 lung cancer cells. Then, we show that ECM remodeling activity causes matrix alignment and compaction that favors higher tractions exerted by the cells. However, these traction forces do not linearly translate into increased motility due to a biphasic role of cell adhesions in cell migration: at low concentration Matrigel promotes migration-effective tractions exerted through a high number of small sized focal adhesions. However, at high Matrigel concentration, traction forces are exerted through fewer, but larger focal adhesions that favor attachment yielding lower cell motility.


Assuntos
Colágeno/farmacologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Laminina/farmacologia , Mecanotransdução Celular , Proteoglicanas/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adesões Focais/ultraestrutura , Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina/química , Modelos Biológicos , Proteoglicanas/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Propriedades de Superfície , Microambiente Tumoral/efeitos dos fármacos
3.
Polymers (Basel) ; 11(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242593

RESUMO

In recent years, the pursuit of new polymer materials based on renewable raw materials has been intensified with the aim of reusing waste materials in sustainable processes. The synthesis of a lignin, styrene, and butyl acrylate based composite was carried out by a mass polymerization process. A series of four composites were prepared by varying the amount of lignin in 5, 10, 15, and 20 wt.% keeping the content of butyl acrylate constant (14 wt.%). FTIR and SEM revealed that the -OH functional groups of lignin reacted with styrene, which was observed by the incorporation of lignin in the copolymer. Additionally, DSC analysis showed that the increment in lignin loading in the composite had a positive influence on thermal stability. Likewise, Shore D hardness assays exhibited an increase from 25 to 69 when 5 and 20 wt.% lignin was used respectively. In this same sense, the contact angle (water) measurement showed that the LEBA15 and LEBA20 composites presented hydrophobic properties (whit contact angle above 90°) despite having the highest amount of lignin, demonstrating that the interaction of the polymer chains with the -OH groups of lignin was the main mechanism in the composites interaction.

4.
Cancer Discov ; 8(2): 196-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101162

RESUMO

Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Técnicas Analíticas Microfluídicas , Receptor de Morte Celular Programada 1/metabolismo , Esferoides Celulares , Imagem com Lapso de Tempo , Células Tumorais Cultivadas
5.
PLoS One ; 12(2): e0171417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166248

RESUMO

Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.


Assuntos
Movimento Celular , Colágeno , Laminina , Microfluídica , Proteoglicanas , Alicerces Teciduais , Linhagem Celular Tumoral , Colágeno/química , Colágeno/ultraestrutura , Difusão , Combinação de Medicamentos , Matriz Extracelular , Humanos , Hidrogéis , Laminina/química , Laminina/ultraestrutura , Fenômenos Mecânicos , Microfluídica/métodos , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Proteoglicanas/química , Proteoglicanas/ultraestrutura , Esferoides Celulares , Alicerces Teciduais/química , Células Tumorais Cultivadas , Microambiente Tumoral
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 8139-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26738183

RESUMO

The geometry of 3D collagen networks is a key factor that influences the behavior of live cells within extra-cellular matrices. This paper presents a method for automatic quantification of the 3D collagen network geometry with fiber resolution in confocal reflection microscopy images. The proposed method is based on a smoothing filter and binarization of the collagen network followed by a fiber reconstruction algorithm. The method is validated on 3D collagen gels with various collagen and Matrigel concentrations. The results reveal that Matrigel affects the collagen network geometry by decreasing the network pore size while preserving the fiber length and fiber persistence length. The influence of network composition and geometry, especially pore size, is preliminarily analyzed by quantifying the migration patterns of lung cancer cells within microfluidic devices filled with three different hydrogel types. The experiments reveal that Matrigel, while decreasing pore size, stimulates cell migration. Further studies on this relationship could be instrumental for the study of cancer metastasis and other biological processes involving cell migration.


Assuntos
Neoplasias , Movimento Celular , Colágeno , Matriz Extracelular , Humanos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA