Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011889

RESUMO

Autoimmune diseases with B cell-directed therapeutics approved by the US Food and Drug Administration are surprisingly diverse in clinical manifestations and pathophysiology. In this review, we focus on recent clinical and mechanistic insights into the efficacy of B cell depletion in these diverse autoimmune disorders, the rapidly expanding armamentarium of approved agents, and future approaches. The pathogenic roles for B cells include direct functions such as production of autoantibodies and proinflammatory cytokines and indirect functions via antigen presentation to T cells. The efficacy of B cell-depleting strategies varies across diseases and likely reflects the complexity of disease pathogenesis and relative contribution of B cell roles. Additionally, B cell-depleting therapies do not equally target all B cell subsets in all patients, and this likely explains some of the variability in responses. Recent reports of B cell depletion with novel chimeric antigen receptor (CAR) T cell approaches in an expanding number of autoimmune diseases highlight the potential role of B cell depletion in resetting immune tolerance. The relative importance of eliminating autoreactive B cells and plasma cells and approaches to doing so will also be discussed. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Nat Immunol ; 20(7): 902-914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209404

RESUMO

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Assuntos
Rim/imunologia , Nefrite Lúpica/imunologia , Biomarcadores , Biópsia , Análise por Conglomerados , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Interferons/metabolismo , Rim/metabolismo , Rim/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Célula Única , Transcriptoma
3.
Nat Immunol ; 20(7): 928-942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061532

RESUMO

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Perfilação da Expressão Gênica , Membrana Sinovial/metabolismo , Transcriptoma , Artrite Reumatoide/patologia , Autoimunidade/genética , Biomarcadores , Biologia Computacional/métodos , Estudos Transversais , Citocinas/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Membrana Sinovial/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fluxo de Trabalho
5.
Nature ; 623(7987): 616-624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938773

RESUMO

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Citocinas/metabolismo , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Predisposição Genética para Doença/genética , Fenótipo , Análise da Expressão Gênica de Célula Única
6.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314758

RESUMO

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-38530774

RESUMO

OBJECTIVE: Lupus nephritis (LN) can occur as an isolated component of disease activity or be accompanied by diverse extrarenal manifestations. Whether isolated renal disease is sufficient to decrease health related quality of life (HRQOL) remains unknown. This study compared Patient-Reported Outcomes Measurement Information System 29-Item (PROMIS-29) scores in LN patients with isolated renal disease to those with extrarenal symptoms to evaluate the burden of LN on HRQOL and inform future LN clinical trials incorporating HRQOL outcomes. METHODS: A total of 181 LN patients consecutively enrolled in the multicentre multi-ethnic/racial Accelerating Medicines Partnership completed PROMIS-29 questionnaires at the time of a clinically indicated renal biopsy. Raw PROMIS-29 scores were converted to standardized T scores. RESULTS: Seventy-five (41%) patients had extrarenal disease (mean age 34, 85% female) and 106 (59%) had isolated renal (mean age 36, 82% female). Rash (45%), arthritis (40%) and alopecia (40%) were the most common extrarenal manifestations. Compared with isolated renal, patients with extrarenal disease reported significantly worse pain interference, ability to participate in social roles, physical function, and fatigue. Patients with extrarenal disease had PROMIS-29 scores that significantly differed from the general population by > 0.5 SD of the reference mean in pain interference, physical function, and fatigue. Arthritis was most strongly associated with worse scores in these three domains. CONCLUSION: Most patients had isolated renal disease and extrarenal manifestations associated with worse HRQOL. These data highlight the importance of comprehensive disease management strategies that address both renal and extrarenal manifestations to improve overall patient outcomes.

9.
J Immunol ; 207(11): 2660-2672, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706932

RESUMO

Type I IFN is essential for viral clearance but also contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), via aberrant nucleic acid-sensing pathways, leading to autoantibody production. Type III IFN (IFN-λ) is now appreciated to have a nonredundant role in viral infection, but few studies have addressed the effects of IFN-λ on immune cells given the more restricted expression of its receptor primarily to the epithelium. In this study, we demonstrate that B cells display a prominent IFN gene expression profile in patients with lupus. Serum levels of IFN-λ are elevated in SLE and positively correlate with B cell subsets associated with autoimmune plasma cell development, including CD11c+T-bet+CD21- B cells. Although B cell subsets express all IFN receptors, IFNLR1 strongly correlates with the CD11c+CD21- B cell expansion, suggesting that IFN-λ may be an unappreciated driver of the SLE IFN signature and B cell abnormalities. We show that IFN-λ potentiates gene transcription in human B cells typically attributed to type I IFN as well as expansion of T-bet-expressing B cells after BCR and TLR7/8 stimulation. Further, IFN-λ promotes TLR7/8-mediated plasmablast differentiation and increased IgM production. CD11c+ B cells demonstrate IFN-λ hyperresponsive signaling compared with other B cell subsets, suggesting that IFN-λ accelerates plasma cell differentiation through this putative extrafollicular pathway. In summary, our data support type III IFN-λ as a cytokine promoting the Ab-secreting cell pool in human viral and autoimmune disease.


Assuntos
Linfócitos B/imunologia , Interferons/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/imunologia , Adulto , Idoso , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Rheumatology (Oxford) ; 61(11): 4335-4343, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212719

RESUMO

OBJECTIVE: Delayed detection of LN associates with worse outcomes. There are conflicting recommendations regarding a threshold level of proteinuria at which biopsy will likely yield actionable management. This study addressed the association of urine protein:creatinine ratios (UPCR) with clinical characteristics and investigated the incidence of proliferative and membranous histology in patients with a UPCR between 0.5 and 1. METHODS: A total of 275 SLE patients (113 first biopsy, 162 repeat) were enrolled in the multicentre multi-ethnic/racial Accelerating Medicines Partnership across 15 US sites at the time of a clinically indicated renal biopsy. Patients were followed for 1 year. RESULTS: At biopsy, 54 patients had UPCR <1 and 221 had UPCR ≥1. Independent of UPCR or biopsy number, a majority (92%) of patients had class III, IV, V or mixed histology. Moreover, patients with UPCR <1 and class III, IV, V, or mixed had a median activity index of 4.5 and chronicity index of 3, yet 39% of these patients had an inactive sediment. Neither anti-dsDNA nor low complement distinguished class I or II from III, IV, V or mixed in patients with UPCR <1. Of 29 patients with baseline UPCR <1 and class III, IV, V or mixed, 23 (79%) had a UPCR <0.5 at 1 year. CONCLUSION: In this prospective study, three-quarters of patients with UPCR <1 had histology showing class III, IV, V or mixed with accompanying activity and chronicity despite an inactive sediment or normal serologies. These data support renal biopsy at thresholds lower than a UPCR of 1.


Assuntos
Nefrite Lúpica , Humanos , Estudos Prospectivos , Incidência , Proteinúria/diagnóstico , Testes de Função Renal , Rim/patologia
11.
Cytokine ; 132: 154725, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31153744

RESUMO

BACKGROUND: We have previously shown that SLE BMSC have decreased proliferation, increased ROS, increased DNA damage and repair (DDR), a senescence associated secretory phenotype, and increased senescence-associated ß-galactosidase. We have also shown SLE BMSC produce increased amounts of interferon beta (IFNß), have increased mRNA for several genes induced by IFNß, and have a pro-inflammatory feedback loop mediated by a MAVS. To better understand the phenotype of SLE BMSC we conducted mRNA sequencing. METHODS: Patients fulfilling SLE classification criteria and age and sex matched healthy controls were recruited under an Institutional Review Board approved protocol. Bone marrow aspirates and peripheral blood samples were obtained. BMSC were isolated and grown in tissue culture. Early passage BMSC were harvested and mRNA samples were sent for RNAseq. Serum samples were assayed for IFNß by ELISA. RESULTS: On the basis of top differentially expressed genes between SLE and healthy controls, SLE patients with high levels of serum IFNß clustered together while SLE patients with low levels of IFNß clustered with healthy controls. Those genes differentially expressed in SLE patients generally belonged to known IFN pathways, and showed a strong overlap with the set of genes differentially expressed in IFNß high subjects, per se. Moreover, gene expression changes induced by treating healthy BMSC with exogenous IFNß were remarkably similar to gene expression differences in SLE IFNß high vs low BMSC. CONCLUSIONS: BMSCs from SLE patients are heterogeneous. A subgroup of SLE BMSC is distinguished from other SLE BMSC and from controls by increased levels of mRNAs induced by type I interferons. This subgroup of SLE patients had increased levels of IFNß in vivo.


Assuntos
Células da Medula Óssea/metabolismo , Interferon beta/fisiologia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos , Interferon beta/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , RNA-Seq
12.
Lupus ; 29(9): 1040-1049, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32515653

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells are multipotent adult stem cells that can differentiate into osteoblasts, adipocytes, and chondrocytes. Our recently published data demonstrate that systemic lupus erythematous bone marrow mesenchymal stem cells produce increased quantities of interferon ß based on a positive feedback loop involving the innate signaling molecule mitochondrial antiviral signaling protein. Moreover, this pathway contributes to human systemic lupus erythematous bone marrow mesenchymal stem cell senescence-like features. Here we investigate the differentiation defects of systemic lupus erythematous bone marrow mesenchymal stem cells and the potential for therapeutic interventions. METHODS: The six systemic lupus erythematous patients recruited in this study satisfy the American College of Rheumatology 1997 classification criteria for systemic lupus erythematous. Systemic Lupus Erythematous Disease Activity Index-2K was used to determine disease activity. Systemic lupus erythematous bone marrow mesenchymal stem cells were isolated with Ficoll centrifugation and phenotyped using flow cytometry. In vitro studies included real-time polymerase chain reaction and western blotting. RESULTS: We compared six age-paired bone marrow aspirates from healthy controls and systemic lupus erythematous patients. Systemic lupus erythematous bone marrow mesenchymal stem cells display significantly reduced alkaline phosphatase staining, as well as reduced expression of osteogenic markers alkaline phosphatase, Runt-related transcription factor 2, and bone sialoprotein. When healthy bone marrow mesenchymal stem cells were treated with interferon ß for 6 hours, expression of these same osteogenic markers was markedly reduced. Conversely the application of interferon ß neutralizing antibody enhanced the expression of osteoblastogenesis markers. When the underlying mechanisms for interferon ß inhibition of osteoblastogenesis were investigated, we found that IFNß pre-treatment activates the inhibitory Smad6 and Smad7 expression through JAK1/STAT1, leading to reduced Smad1 phosphorylation and nuclear translocation. CONCLUSIONS: Our present work suggests that interferon ß affects osteogenesis. By revealing the essential role of interferon ß on systemic lupus erythematous bone marrow mesenchymal stem cell differentiation, our study sheds light on systemic lupus erythematous pathogenesis and provides a new potential therapeutic target for the bone complications found in systemic lupus erythematous.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Interferon beta/farmacologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Osteogênese , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
J Autoimmun ; 102: 150-158, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085070

RESUMO

Systemic lupus (SLE) is characterized by a break of B cell tolerance that plays a central role in disease pathophysiology. An early checkpoint defect occurs at the transitional stage leading to the survival of autoreactive B cells and consequently the production of pathogenic autoantibodies. The main purpose of our work was to determine whether transitional B cells, as the most immature naïve B cell subset upstream of pathogenic B cells, display specific features compared to healthy non SLE subjects. Through extensive analysis of transitional B cells from untreated or low treated, mostly Caucasian, SLE patients, we demonstrated that transitional (T1 and T2) B cell frequencies were increased in SLE and positively correlated with disease activity. SLE transitional B cells displayed defects in two closely inter-related molecules (i.e. TLR9 defective responses and CD19 downregulation). RNA sequencing of sorted transitional B cells from untreated patients revealed a predominant overexpression of interferon stimulated genes (ISGs) even out of flares. In addition, early transitional B cells from the bone marrow displayed the highest interferon score, reflecting a B cell interferon burden of central origin. Hence, the IFN signature in transitional B cells is not confined to African American SLE patients and exists in quiescent disease since the medullary stage. These results suggest that in SLE these 3 factors (i.e. IFN imprintment, CD19 downregulation and TLR9 responses impairment) could take part at the early transitional B cell stage in B cell tolerance by-pass, ultimately leading in periphery to the expansion of autoantibodies-secreting cells.


Assuntos
Antígenos CD19/biossíntese , Interferons/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptor Toll-Like 9/imunologia , Adulto , Idoso , Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Feminino , Humanos , Pessoa de Meia-Idade , Transcriptoma/genética
14.
Curr Rheumatol Rep ; 21(7): 32, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123836

RESUMO

The original version of this article unfortunately contained mistakes.

15.
Curr Rheumatol Rep ; 21(2): 1, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30637490

RESUMO

PURPOSE OF REVIEW: The concept of cellular senescence has been evolving. Although originally proposed based on studies of serum-driven replication of cell lines in vitro, it is now clear that cellular senescence occurs in vivo. It has also become clear that cellular senescence can be triggered by a number of stimuli such as radiation, chemotherapy, activation of oncogenes, metabolic derangements, and chronic inflammation. RECENT FINDINGS: As we learn more about the mechanisms of cellular aging, it has become important to ask whether accelerated cellular senescence occurs in lupus and other systemic rheumatologic diseases. Accelerated cellular aging may be one explanation for some of the excess morbidity and mortality seen in lupus patients. If so, drugs targeting cellular senescence may provide new options for preventing long-term complications such as organ failure in systemic lupus erythematosus patients.


Assuntos
Senescência Celular/fisiologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Humanos , Lúpus Eritematoso Sistêmico/patologia
16.
J Immunol ; 199(2): 458-466, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28584005

RESUMO

Neutrophils are well characterized as mediators of peripheral tissue damage in lupus, but it remains unclear whether they influence loss of self-tolerance in the adaptive immune compartment. Lupus neutrophils produce elevated levels of factors known to fuel autoantibody production, including IL-6 and B cell survival factors, but also reactive oxygen intermediates, which can suppress lymphocyte proliferation. To assess whether neutrophils directly influence the progression of autoreactivity in secondary lymphoid organs (SLOs), we characterized the localization and cell-cell contacts of splenic neutrophils at several stages in the progression of disease in the NZB/W murine model of lupus. Neutrophils accumulate in SLO over the course of lupus progression, preferentially localizing near T lymphocytes early in disease and B cells with advanced disease. RNA sequencing reveals that the splenic neutrophil transcriptional program changes significantly over the course of disease, with neutrophil expression of anti-inflammatory mediators peaking during early-stage and midstage disease, and evidence of neutrophil activation with advanced disease. To assess whether neutrophils exert predominantly protective or deleterious effects on loss of B cell self-tolerance in vivo, we depleted neutrophils at different stages of disease. Neutrophil depletion early in lupus resulted in a striking acceleration in the onset of renal disease, SLO germinal center formation, and autoreactive plasma cell production. In contrast, neutrophil depletion with more advanced disease did not alter systemic lupus erythematosus progression. These results demonstrate a surprising temporal and context-dependent role for neutrophils in restraining autoreactive B cell activation in lupus.


Assuntos
Autoimunidade , Progressão da Doença , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Linfócitos B/imunologia , Modelos Animais de Doenças , Centro Germinativo/citologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NZB , Neutrófilos/fisiologia , Análise de Sequência de RNA , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia
17.
J Proteome Res ; 15(7): 2102-14, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211902

RESUMO

A discovery study was carried out where serum samples from 22 systemic lupus erythematosus (SLE) patients and matched healthy controls were hybridized to antibody-coated glass slide arrays that interrogated the level of 274 human proteins. On the basis of these screens, 48 proteins were selected for ELISA-based validation in an independent cohort of 28 SLE patients. Whereas AXL, ferritin, and sTNFRII were significantly elevated in patients with active lupus nephritis (LN) relative to SLE patients who were quiescent, other molecules such as OPN, sTNFRI, sTNFRII, IGFBP2, SIGLEC5, FAS, and MMP10 exhibited the capacity to distinguish SLE from healthy controls with ROC AUC exceeding 90%, all with p < 0.001 significance. These serum markers were next tested in a cohort of 45 LN patients, where serum was obtained at the time of renal biopsy. In these patients, sTNFRII exhibited the strongest correlation with eGFR (r = -0.50, p = 0.0014) and serum creatinine (r = 0.57, p = 0.0001), although AXL, FAS, and IGFBP2 also correlated with these clinical measures of renal function. When concurrent renal biopsies from these patients were examined, serum FAS, IGFBP2, and TNFRII showed significant positive correlations with renal pathology activity index, while sTNFRII displayed the highest correlation with concurrently scored renal pathology chronicity index (r = 0.57, p = 0.001). Finally, in a longitudinal cohort of seven SLE patients examined at ∼3 month intervals, AXL, ICAM-1, IGFBP2, SIGLEC5, sTNFRII, and VCAM-1 demonstrated the ability to track with concurrent disease flare, with significant subject to subject variation. In summary, serum proteins have the capacity to identify patients with active nephritis, flares, and renal pathology activity or chronicity changes, although larger longitudinal cohort studies are warranted.


Assuntos
Biomarcadores/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Nefrite Lúpica/diagnóstico , Proteômica/métodos , Adulto , Anticorpos/metabolismo , Estudos de Casos e Controles , Humanos , Proteoma/análise , Receptores Tipo II do Fator de Necrose Tumoral/análise , Índice de Gravidade de Doença , Receptor fas/análise
18.
J Immunol ; 192(7): 3011-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574498

RESUMO

Autoantibodies to dsDNA, produced by autoreactive plasma cells (PCs), are a hallmark of systemic lupus erythematosus and play a key role in disease pathogenesis. Recent data suggest that autoreactive PCs accumulate not only in lymphoid tissues, but also in the inflamed kidney in lupus nephritis. We hypothesized that the variable efficacy of anti-CD20 (rituximab)-mediated B cell depletion in systemic lupus erythematosus may be related to the absence of an effect on autoreactive PCs in the kidney. In this article, we report that an enrichment of autoreactive dsDNA Ab-secreting cells (ASCs) in the kidney of lupus-prone mice (up to 40% of the ASCs) coincided with a progressive increase in splenic germinal centers and PCs, and an increase in renal expression for PC survival factors (BAFF, a proliferation-inducing ligand, and IL-6) and PC attracting chemokines (CXCL12). Short-term treatment with anti-CD20 (4 wk) neither decreased anti-dsDNA nor IgG ASCs in different anatomical locations. However, long-term treatment (12 wk) significantly reduced both IgG- and dsDNA-specific ASCs. In addition, long-term treatment substantially decreased splenic germinal center and PC generation, and unexpectedly reduced the expression for PC survival factors in the kidney. These results suggest that prolonged B cell depletion may alter the PC survival niche in the kidney, regulating the accumulation and maintenance of autoreactive PCs.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/imunologia , Animais , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Antirreumáticos/farmacologia , Autoanticorpos/metabolismo , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Sobrevivência Celular/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Feminino , Citometria de Fluxo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Camundongos Endogâmicos , Microscopia de Fluorescência , Plasmócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab , Baço/imunologia , Baço/metabolismo , Fatores de Tempo
19.
J Immunol ; 192(3): 906-18, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24379124

RESUMO

Inappropriate activation of type I IFN plays a key role in the pathogenesis of autoimmune disease, including systemic lupus erythematosus (SLE). In this study, we report the presence of IFN activation in SLE bone marrow (BM), as measured by an IFN gene signature, increased IFN regulated chemokines, and direct production of IFN by BM-resident cells, associated with profound changes in B cell development. The majority of SLE patients had an IFN signature in the BM that was more pronounced than the paired peripheral blood and correlated with both higher autoantibodies and disease activity. Pronounced alterations in B cell development were noted in SLE in the presence of an IFN signature with a reduction in the fraction of pro/pre-B cells, suggesting an inhibition in early B cell development and an expansion of B cells at the transitional stage. These B cell changes strongly correlated with an increase in BAFF and APRIL expression in the IFN-high BM. Furthermore, we found that BM neutrophils in SLE were prime producers of IFN-α and B cell factors. In NZM lupus-prone mice, similar changes in B cell development were observed and mediated by IFN, given abrogation in NZM mice lacking type-I IFNR. BM neutrophils were abundant, responsive to, and producers of IFN, in close proximity to B cells. These results indicate that the BM is an important but previously unrecognized target organ in SLE with neutrophil-mediated IFN activation and alterations in B cell ontogeny and selection.


Assuntos
Subpopulações de Linfócitos B/imunologia , Medula Óssea/imunologia , Interferon Tipo I/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Linfopoese/imunologia , Neutrófilos/imunologia , Adulto , Animais , Fator Ativador de Células B/biossíntese , Fator Ativador de Células B/genética , Subpopulações de Linfócitos B/patologia , Medula Óssea/metabolismo , Quimiocinas/biossíntese , Quimiocinas/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Interferon Tipo I/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima/imunologia
20.
Curr Opin Rheumatol ; 27(5): 461-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164595

RESUMO

PURPOSE OF REVIEW: Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Primary Sjögren's syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. RECENT FINDINGS: Data have continued to expand regarding the diverse mechanisms by which innate immune signals including Toll-like receptors (TLRs) regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. SUMMARY: The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches.


Assuntos
Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Imunidade Adaptativa , Autoimunidade , Humanos , Imunidade Inata , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA