Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 9: e10744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665008

RESUMO

The current pesticide risk assessment paradigm may not adequately protect solitary bees as it focuses primarily on the honey bee (Apis mellifera). The alfalfa leafcutting bee (Megachile rotundata) is a potential surrogate species for use in pesticide risk assessment for solitary bees in North America. However, the toxicity of potential toxic reference standards to M. rotundata will need to be determined before pesticide risk assessment tests (tier I trials) can be implemented. Therefore, we assessed the acute topical toxicity and generated LD50 values for three insecticides: dimethoate (62.08 ng a.i./bee), permethrin (50.01 ng a.i./bee), and imidacloprid (12.82 ng a.i/bee). The variation in the mass of individual bees had a significant but small effect on these toxicity estimates. Overall, the toxicity of these insecticides to M. rotundata were within the 10-fold safety factor currently used with A. mellifera toxicity estimates from tier I trials to estimate risk to other bee species. Therefore, tier I pesticide risk assessments with solitary bees may not be necessary, and efforts could be directed to developing more realistic, higher-tier pesticide risk assessment trials for solitary bees.

2.
PeerJ ; 6: e6278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30687587

RESUMO

BACKGROUND: Current regulatory pesticide risk assessments for bees are based primarily on the honey bee (Apis mellifera) and may not always be protective of solitary bees. To incorporate solitary bees into the risk assessment process, standardized methods to assess the hazard of pesticides under semi-field (Tier II) conditions will be needed. We conducted a series of experiments over 2 years to assess potential surrogate plants and adult release rates for use in semi-field experiments with the alfalfa leafcutting bee (ALB, Megachile rotundata). METHODS: We compared ALB foraging activity and reproduction on 12 m2 plots of flowering alfalfa (Medicago sativa) and buckwheat (Fagopyrum esculentum) at low (10♀/20♂) and high (20♀/40♂) adult release rates. The following year, we assessed the same endpoints on plots of purple tansy (Phacelia tanacetifolia) at a release rate of 10♀/15♂. RESULTS: Although ALB foraging activity was high on buckwheat plots, fewer adults were produced compared to alfalfa plots. On alfalfa, there were no differences in foraging activity, nesting, or reproduction between the low and high release rates. ALB readily foraged from purple tansy flowers, but females avoided purple tansy leaves for leaf cell construction. DISCUSSION: Our study suggests that buckwheat alone cannot support ALB during semi-field studies on small plots. For alfalfa, we recommend a maximum release rate of 10♀/20♂ in 12 m2 plots. Further study of higher ALB release rates on purple tansy is warranted. A mixed planting of purple tansy and a plant suitable for leaf piece collection (e.g., buckwheat) may provide favorable conditions for ALB activity and reproduction during semi-field testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA