Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Biol ; 89(1): 81-97, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29285971

RESUMO

Access to a geographically diverse set of modern human samples from the present time and from ancient remains, combined with archaic hominin samples, provides an unprecedented level of resolution to study both human history and adaptation. The amount and quality of ancient human data continue to improve and enable tracking the trajectory of genetic variation over time. These data have the potential to help us redefine or generate new hypotheses of how human evolution occurred and to revise previous conjectures. In this article, we argue that leveraging all these data will help us better detail adaptive histories in humans. As a case in point, we focus on one of the most celebrated examples of human adaptation: the evolution of lactase persistence. We briefly review this dietary adaptation and argue that, effectively, the evolutionary history of lactase persistence is still not fully resolved. We propose that, by leveraging data from multiple populations across time and space, we will find evidence of a more nuanced history than just a simple selective sweep. We support our hypotheses with simulation results and make some cautionary notes regarding the use of haplotype-based summary statistics to estimate evolutionary parameters.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Frequência do Gene/genética , Hominidae , Lactase/genética , Repetições de Microssatélites/genética , Animais , Primers do DNA , Dieta , Deriva Genética , Genética Populacional , Haplótipos/genética , História Antiga , Humanos , Lactase/metabolismo , Teste de Tolerância a Lactose , Leite , Seleção Genética
2.
Cancer Discov ; 14(1): 142-157, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934007

RESUMO

Suboptimal functional persistence limits the efficacy of adoptive T-cell therapies. CD28-based chimeric antigen receptors (CAR) impart potent effector function to T cells but with a limited lifespan. We show here that the genetic disruption of SUV39H1, which encodes a histone-3, lysine-9 methyl-transferase, enhances the early expansion, long-term persistence, and overall antitumor efficacy of human CAR T cells in leukemia and prostate cancer models. Persisting SUV39H1-edited CAR T cells demonstrate improved expansion and tumor rejection upon multiple rechallenges. Transcriptional and genome accessibility profiling of repeatedly challenged CAR T cells shows improved expression and accessibility of memory transcription factors in SUV39H1-edited CAR T cells. SUV39H1 editing also reduces expression of inhibitory receptors and limits exhaustion in CAR T cells that have undergone multiple rechallenges. Our findings thus demonstrate the potential of epigenetic programming of CAR T cells to balance their function and persistence for improved adoptive cell therapies. SIGNIFICANCE: T cells engineered with CD28-based CARs possess robust effector function and antigen sensitivity but are hampered by limited persistence, which may result in tumor relapse. We report an epigenetic strategy involving disruption of the SUV39H1-mediated histone-silencing program that promotes the functional persistence of CD28-based CAR T cells. See related article by López-Cobo et al., p. 120. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Masculino , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T , Histonas/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Imunoterapia Adotiva , Leucemia/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Curr Biol ; 28(6): 963-971.e8, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29526588

RESUMO

Maternally transmitted Wolbachia, Spiroplasma, and Cardinium bacteria are common in insects [1], but their interspecific spread is poorly understood. Endosymbionts can spread rapidly within host species by manipulating host reproduction, as typified by the global spread of wRi Wolbachia observed in Drosophila simulans [2, 3]. However, because Wolbachia cannot survive outside host cells, spread between distantly related host species requires horizontal transfers that are presumably rare [4-7]. Here, we document spread of wRi-like Wolbachia among eight highly diverged Drosophila hosts (10-50 million years) over only about 14,000 years (5,000-27,000). Comparing 110 wRi-like genomes, we find ≤0.02% divergence from the wRi variant that spread rapidly through California populations of D. simulans. The hosts include both globally invasive species (D. simulans, D. suzukii, and D. ananassae) and narrowly distributed Australian endemics (D. anomalata and D. pandora) [8]. Phylogenetic analyses that include mtDNA genomes indicate introgressive transfer of wRi-like Wolbachia between closely related species D. ananassae, D. anomalata, and D. pandora but no horizontal transmission within species. Our analyses suggest D. ananassae as the Wolbachia source for the recent wRi invasion of D. simulans and D. suzukii as the source of Wolbachia in its sister species D. subpulchrella. Although six of these wRi-like variants cause strong cytoplasmic incompatibility, two cause no detectable reproductive effects, indicating that pervasive mutualistic effects [9, 10] complement the reproductive manipulations for which Wolbachia are best known. "Super spreader" variants like wRi may be particularly useful for controlling insect pests and vector-borne diseases with Wolbachia transinfections [11].


Assuntos
Drosophila/genética , Wolbachia/genética , Animais , Evolução Biológica , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Transmissão de Doença Infecciosa/veterinária , Drosophila/microbiologia , Evolução Molecular , Genoma/genética , Transmissão Vertical de Doenças Infecciosas/veterinária , Espécies Introduzidas , Filogenia , Simbiose/genética , Wolbachia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA