Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 23(6): 960-970, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654851

RESUMO

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Glicoproteína da Espícula de Coronavírus
2.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889306

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Cell Biochem ; 118(12): 4414-4424, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28452069

RESUMO

Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Antígeno AC133/metabolismo , Anilidas/farmacologia , Micropartículas Derivadas de Células/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Desacetilase 6 de Histona/metabolismo , Humanos
4.
Exp Cell Res ; 319(6): 810-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318676

RESUMO

Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1-positive structures appeared in three sizes (small, ≤40 nm; intermediates ~40-80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1-containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Melanoma/metabolismo , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Via de Sinalização Wnt , beta Catenina/metabolismo , Antígeno AC133 , Antígenos CD/genética , Compostos Azo/metabolismo , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicoproteínas/genética , Complexo de Golgi/metabolismo , Humanos , Imuno-Histoquímica , Lipídeos/análise , Melanoma/patologia , Invasividade Neoplásica/patologia , Peptídeos/genética , Regiões Promotoras Genéticas , Análise Espectral Raman , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica , Transfecção , beta Catenina/genética
5.
Mol Cancer ; 12: 62, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23767874

RESUMO

Exosomes can be viewed as complex "messages" packaged to survive trips to other cells in the local microenvironment and, through body fluids, to distant sites. A large body of evidence indicates a pro-metastatic role for certain types of cancer exosomes. We previously reported that prominin-1 had a pro-metastatic role in melanoma cells and that microvesicles released from metastatic melanoma cells expressed high levels of prominin-1. With the goal to explore the mechanisms that govern proteo-lipidic-microRNA sorting in cancer exosomes and their potential contribution(s) to the metastatic phenotype, we here employed prominin-1-based immunomagnetic separation in combination with filtration and ultracentrifugation to purify prominin-1-expressing exosomes (prom1-exo) from melanoma and colon carcinoma cells. Prom1-exo contained 154 proteins, including all of the 14 proteins most frequently expressed in exosomes, and multiple pro-metastatic proteins, including CD44, MAPK4K, GTP-binding proteins, ADAM10 and Annexin A2. Their lipid composition resembled that of raft microdomains, with a great enrichment in lyso-phosphatidylcholine, lyso-phosphatidyl-ethanolamine and sphingomyelin. The abundance of tetraspanins and of tetraspanin-associated proteins, together with the high levels of sphingomyelin, suggests that proteolipidic assemblies, probably tetraspanin webs, might be the essential structural determinant in the release process of prominin-1 of stem and cancer stem cells. Micro-RNA profiling revealed 49 species of micro-RNA present at higher concentrations in prom1-exo than in parental cells, including 20 with cancer-related function. Extensive accumulation of prom1-exo was observed 3 h after their addition to cultures of melanoma and bone marrow-derived stromal cells (MSC). Short-term co-culture of melanoma cells and MSC resulted in heterologous prominin-1 transfer. Exposure of MSC to prom1-exo increased their invasiveness. Our study supports the concept that specific populations of cancer exosomes contain multiple determinants of the metastatic potential of the cells from which they are derived.


Assuntos
Antígenos CD/metabolismo , Exossomos/química , Exossomos/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Células da Medula Óssea/química , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Integrina beta1/metabolismo , Lipídeos/química , Melanoma/química , Melanoma/metabolismo , Microdomínios da Membrana , MicroRNAs/química , MicroRNAs/metabolismo , Ligação Proteica , Proteoma , Células Estromais/química , Células Estromais/metabolismo
6.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162858

RESUMO

Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.

7.
bioRxiv ; 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821273

RESUMO

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and, importantly, as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a coronavirus disease 2019 (COVID-19)-convalescent donor that exhibits broad reactivity with human beta-coronaviruses (ß-CoVs). Here, we showed that CC40.8 targets the conserved S2 stem-helix region of the coronavirus spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem-peptide at 1.6 Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted CC40.8-like bnAbs are relatively rare in human COVID-19 infection and therefore their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines. SUMMARY: A human mAb isolated from a COVID-19 donor defines a protective cross-neutralizing epitope for pan-ß-CoV vaccine design strategies.

8.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133175

RESUMO

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947674

RESUMO

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus
10.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291291

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.

11.
bioRxiv ; 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35169804

RESUMO

The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.

12.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321200

RESUMO

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/química , Infecções por HIV/imunologia , HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Vacinas contra a AIDS/química , Animais , COVID-19/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Humanos , Macaca mulatta , Coelhos , SARS-CoV-2/química , SARS-CoV-2/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
13.
bioRxiv ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33619491

RESUMO

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2 and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.

14.
Nat Commun ; 12(1): 2938, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011939

RESUMO

Pre-existing immunity to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, induced from natural infection or vaccination. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. Here we compare serum antibody and memory B cell responses to coronavirus spike proteins from pre-pandemic and SARS-CoV-2 convalescent donors using binding and functional assays. We show weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we find evidence of pre-existing cross-reactive memory B cells that are activated during SARS-CoV-2 infection. Monoclonal antibodies show varying degrees of cross-reactivity with betacoronaviruses, including SARS-CoV-1 and endemic coronaviruses. We identify one cross-reactive neutralizing antibody specific to the S2 subunit of the S protein. Our results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Proteção Cruzada/imunologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Reações Cruzadas/imunologia , Feminino , Humanos , Memória Imunológica/imunologia , Masculino
15.
Int J Cancer ; 126(5): 1206-15, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19653275

RESUMO

The prognosis of patients with glioblastoma multiforme (GBM) is generally poor after surgical tumor resection. With the aim of developing new adjuvant therapeutic strategies, we have investigated primary neural stem/progenitor cells (NSPC) in co-cultures with glioma cells, and in a model of gene therapy on aggressively growing malignant glioma. NSPC exhibited tropism towards medium conditioned by glioma cells, and in adherent low-cell density co-culture, were attracted to, and fused with, tumor cells. Similarly, within 24-48 hr of co-culture in suspension, NSPC-tumor hybrids were observed, representing 2-3% of the total cell population. NSPC were then coinjected into mouse brain with GBM cells, employing NSPC expressing cyclophosphamide (CPA)-activating enzyme cytochrome p450 2B6 (CYP2B6), which catalyzes CPA prodrug transformation into membrane diffusible DNA-alkylating metabolites. Upon CPA administration, NSPC containing CYP2B6 elicited substantial impairment of tumor growth. When implanted intracerebrally at a distant site from the tumor, gene-engineered NSPC specifically targeted GBM grafts, after traveling through brain parenchyma, and hindered tumor growth through local activation of CPA. Directed migration of primary NSPC corresponded closely with intracerebral and tumoral pattern of expression of vascular endothelial growth factor, which is a motility factor for NSPC. Overall, these findings indicate that therapeutic gene delivery mediated by primary NSPC is a potentially valid strategy for treatment of high-grade gliomas.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioma/terapia , Células Híbridas/transplante , Neurônios/citologia , Células-Tronco/citologia , Animais , Antineoplásicos Alquilantes/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Diferenciação Celular , Movimento Celular , Técnicas de Cocultura , Ciclofosfamida/farmacologia , Citocromo P-450 CYP2B6 , Engenharia Genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases N-Desmetilantes/genética , Transdução Genética
16.
bioRxiv ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32995770

RESUMO

Pre-existing immune responses to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, either induced in natural infection or through vaccination. Such consequences are well established in the influenza and flavivirus fields. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. We compared serum antibody and memory B cell responses to coronavirus spike (S) proteins from pre-pandemic and SARS-CoV-2 convalescent donors using a series of binding and functional assays. We found weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we found stronger evidence of pre-existing cross-reactive memory B cells that were activated on SARS-CoV-2 infection. Monoclonal antibodies (mAbs) isolated from the donors showed varying degrees of cross-reactivity with betacoronaviruses, including SARS and endemic coronaviruses. None of the cross-reactive mAbs were neutralizing except for one that targeted the S2 subunit of the S protein. The results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.

17.
Exp Cell Res ; 314(10): 2110-22, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18423605

RESUMO

Malignant tumors comprise a small proportion of cancer-initiating cells (CIC), capable of sustaining tumor formation and growth. CIC are the main potential target for anticancer therapy. However, the identification of molecular therapeutic targets in CIC isolated from primary tumors is an extremely difficult task. Here, we show that after years of passaging under differentiating conditions, glioblastoma, mammary carcinoma, and melanoma cell lines contained a fraction of cells capable of forming spheroids upon in vitro growth under stem cell-like conditions. We found an increased expression of surface markers associated with the stem cell phenotype and of oncogenes in cell lines and clones cultured as spheroids vs. adherent cultures. Also, spheroid-forming cells displayed increased tumorigenicity and an altered pattern of chemosensitivity. Interestingly, also from single retrovirally marked clones, it was possible to isolate cells able to grow as spheroids and associated with increased tumorigenicity. Our findings indicate that short-term selection and propagation of CIC as spheroid cultures from established cancer cell lines, coupled with gene expression profiling, represents a suitable tool to study and therapeutically target CIC: the notion of which genes have been down-regulated during growth under differentiating conditions will help find CIC-associated therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/terapia , Esferoides Celulares , Células-Tronco/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Técnicas de Cultura de Células , Transformação Celular Neoplásica , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos
18.
Oncol Lett ; 10(2): 815-821, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622576

RESUMO

Alcohol consumption is one of the most important, and potentially avoidable, risk factors of human cancer, accounting for 3.6% of all types of cancer worldwide. In a recent meta-analysis, a 20% increased risk of melanoma was linked with regular alcohol consumption. In the present study, the effect of ethanol exposure on the expression of the nerve growth factor receptor, CD271, in human FEMX-I melanoma cells was investigated. Consistent with the derivation of melanocytes from the neural crest, the majority of melanomas express CD271, a protein that is crucial for maintaining the melanoma stem cell properties, including the capacity of self-renewal and resistance to chemotherapy and radiotherapy. Analysis of CD271-sorted subpopulations and clones of FEMX-I cells indicated no hierarchical organization of CD271+ and CD271- cells. In addition, CD271 expression was lost upon growth of FEMX-I melanoma cells in cancer stem cell-like conditions, while it was greatly increased upon CD133 knockdown or exposure to ethanol. After 24-h exposure to 100, 200 and 400 mM ethanol, the percentage of CD271+ cells increased from 14% in control cells to 24, 35 and 88%, respectively. An increase in the percentage of CD271+ cells was already evident 8 h after ethanol exposure and reached a maximum at 48 h. Ethanol-induced upregulation of CD271 was mediated by nuclear factor-κB (NF-κB). In fact, exposure of FEMX-I cells to 100-400 mM ethanol for 24 h resulted in a concentration- and time-dependent increase in NF-κB activity, up to 900% that of control cells. NF-κB activation was due to a decrease in p50 homodimers, which occupy the NF-κB binding site, blocking transactivation. No effects of ethanol on 9 additional signaling pathways of FEMX-I cells were observed. In the presence of CD271 blocking antibodies, NF-κB activation was not prevented, indicating that ethanol did not target CD271 directly. These data demonstrate that ethanol induces expression of CD271 in FEMX-I cells via NF-κB activation and indicate a possible molecular link between ethanol exposure and melanoma formation.

19.
PLoS One ; 7(12): e53364, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300919

RESUMO

A number of studies have shown that tumor cells fuse with other tumor and non-tumor cells. In the present study on tumor cell lines derived from glioblastoma, breast cancer, and melanoma, we estimated the frequency of fusion between tumor cells by establishing the fraction of cells with whole tumor-genome duplication in each cell line. Together with this, the capacity of the tumor cell lines to spread through a basement membrane scaffold was assessed, in order to test the hypothesis that pericellular proteolysis by enzymatic release in the spaces of intercellular contact could account for differences in the fusogenicity of tumor cells. The difference in invasiveness between the cell lines accounted for their specific amount of cells with tumor-genome duplication, which, depending on the cell line analyzed, ranged from 2% to 25% of the total cells. These results support the hypothesis that cell-to-cell invasion eliciting membrane fusion causes polyploidization in tumor cells.


Assuntos
Invasividade Neoplásica/genética , Poliploidia , Membrana Basal/patologia , Linhagem Celular Tumoral , Humanos , Invasividade Neoplásica/patologia
20.
Cancer Chemother Pharmacol ; 67(4): 919-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20596710

RESUMO

PURPOSE: Imatinib mesylate (Imatinib), clinically employed for chronic myeloid leukemia and gastrointestinal stromal tumors, is a selective inhibitor of the tyrosine kinases, c-abl, c-kit and PDGFRs. Due to the frequent expression of these genes in breast cancer cells, the clinical efficacy of Imatinib has recently been investigated in patients with advanced and metastatic breast cancer. Here, we have studied the effects of Imatinib on human MA-11 breast carcinoma cells, expressing both c-abl and PDGFRbeta, in vitro and in mouse xenografts. METHODS: The effects of Imatinib mesylate on the human MA-11 breast carcinoma cell line were studied in vitro and in xenografts. RESULTS: Daily intraperitoneal treatment with 60 mg/kg Imatinib for 9 days of athymic nude mice pre-implanted subcutaneously with MA-11 cells did not result in an anti-tumor effect, but rather increased the take rate of 3 × 10(4) cells from 30.8 to 84.6% and caused the appearance of large abdominal masses in 30% of mice. To investigate the mechanism(s) of the observed effects of Imatinib on MA-11 tumors, we exposed the cells in vitro to Imatinib for 9 days. The surviving population, expanded in culture, showed increased motility and over-expressed a set of genes associated with aggressive behavior. Also, several genes belonging to the Wnt and the MAPK pathway were differentially expressed. In promoter activation assays, Imatinib increased the promoter activity driven by both Wnt and MAPK/ERK-1/2. CONCLUSIONS: Our data suggest caution in the clinical use of Imatinib in breast cancer patients; the comparison of Imatinib-surviving breast cancer cells with parental cells may help define the regulatory pathways involved in the increased malignancy of residual tumor cells that survive therapy, ultimately providing important therapeutic targets.


Assuntos
Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Piperazinas/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Benzamidas , Neoplasias da Mama/patologia , Feminino , Humanos , Mesilato de Imatinib , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Piperazinas/farmacologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA