Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(2): 260-270, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348015

RESUMO

Blood flow restriction training (BFRT) employs partial vascular occlusion of exercising muscle and has been shown to increase muscle performance while using reduced workload and training time. Numerous studies have demonstrated that BFRT increases muscle hypertrophy, mitochondrial function, and beneficial vascular adaptations. However, changes in cardiovascular hemodynamics during the exercise protocol remain unknown, as most studies measured blood pressure before the onset and after the cessation of exercise. With reduced perfusion to the exercising muscle during BFRT, the resultant accumulation of metabolites within the ischemic muscle could potentially trigger a large reflex increase in blood pressure, termed the muscle metaboreflex. At low workloads, this pressor response occurs primarily via increases in cardiac output. However, when increases in cardiac output are limited (e.g., heart failure or during severe exercise), the reflex shifts to peripheral vasoconstriction as the primary mechanism to increase blood pressure, potentially increasing the risk of a cardiovascular event. Using our chronically instrumented conscious canine model, we utilized a 60% reduction in femoral blood pressure applied to the hindlimbs during steady-state treadmill exercise (3.2 km/h) to reproduce the ischemic environment observed during BFRT. We observed significant increases in heart rate (+19 ± 3 beats/min), stroke volume (+2.52 ± 1.2 mL), cardiac output (+1.21 ± 0.2 L/min), mean arterial pressure (+18.2 ± 2.4 mmHg), stroke work (+1.93 ± 0.2 L/mmHg), and nonischemic vascular conductance (+3.62 ± 1.7 mL/mmHg), indicating activation of the muscle metaboreflex.NEW & NOTEWORTHY Blood flow restriction training (BFRT) increases muscle mass, strength, and endurance. There has been minimal consideration of the reflex cardiovascular responses that could be elicited during BFRT sessions. We showed that during low-intensity exercise BFRT may trigger large reflex increases in blood pressure and sympathetic activity due to muscle metaboreflex activation. Thus, we urge caution when employing BFRT, especially in patients in whom exaggerated cardiovascular responses may occur that could cause sudden, adverse cardiovascular events.


Assuntos
Terapia de Restrição de Fluxo Sanguíneo , Contração Muscular , Humanos , Animais , Cães , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Hemodinâmica , Pressão Sanguínea , Débito Cardíaco , Isquemia , Fluxo Sanguíneo Regional
2.
Front Physiol ; 13: 841076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399256

RESUMO

The ventricular-vascular relationship assesses the efficacy of energy transferred from the left ventricle to the systemic circulation and is quantified as the ratio of effective arterial elastance to maximal left ventricular elastance. This relationship is maintained during exercise via reflex increases in cardiovascular performance raising both arterial and ventricular elastance in parallel. These changes are, in part, due to reflexes engendered by activation of metabosensitive skeletal muscle afferents-termed the muscle metaboreflex. However, in heart failure, ventricular-vascular uncoupling is apparent and muscle metaboreflex activation worsens this relationship through enhanced systemic vasoconstriction markedly increasing effective arterial elastance which is unaccompanied by substantial increases in ventricular function. This enhanced arterial vasoconstriction is, in part, due to significant reductions in cardiac performance induced by heart failure causing over-stimulation of the metaboreflex due to under perfusion of active skeletal muscle, but also as a result of reduced baroreflex buffering of the muscle metaboreflex-induced peripheral sympatho-activation. To what extent the arterial baroreflex modifies the metaboreflex-induced changes in effective arterial elastance is unknown. We investigated in chronically instrumented conscious canines if removal of baroreflex input via sino-aortic baroreceptor denervation (SAD) would significantly enhance effective arterial elastance in normal animals and whether this would be amplified after induction of heart failure. We observed that effective arterial elastance (Ea), was significantly increased during muscle metaboreflex activation after SAD (0.4 ± 0.1 mmHg/mL to 1.4 ± 0.3 mmHg/mL). In heart failure, metaboreflex activation caused exaggerated increases in Ea and in this setting, SAD significantly increased the rise in Ea elicited by muscle metaboreflex activation (1.3 ± 0.3 mmHg/mL to 2.3 ± 0.3 mmHg/mL). Thus, we conclude that the arterial baroreflex does buffer muscle metaboreflex induced increases in Ea and this buffering likely has effects on the ventricular-vascular coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA