Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 148(1): 10, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048735

RESUMO

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Mutação em Linhagem Germinativa , Proteínas Priônicas , Humanos , Proteínas Priônicas/genética , Masculino , Feminino , Idoso , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa/genética , Encéfalo/patologia , Idoso de 80 Anos ou mais , Doenças Priônicas/genética , Doenças Priônicas/patologia , Mutação
2.
Acta Neuropathol ; 147(1): 17, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231266

RESUMO

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Biomarcadores
3.
Alzheimers Dement ; 20(3): 2034-2046, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184787

RESUMO

INTRODUCTION: Recent data suggest that distinct prion-like amyloid beta and tau strains are associated with rapidly progressive Alzheimer's disease (rpAD). The role of genetic factors in rpAD is largely unknown. METHODS: Previously known AD risk loci were examined in rpAD cases. Genome-wide association studies (GWAS) were performed to identify variants that influence rpAD. RESULTS: We identified 115 pathology-confirmed rpAD cases and 193 clinical rpAD cases, 80% and 69% were of non-Hispanic European ancestry. Compared to the clinical cohort, pathology-confirmed rpAD had higher frequencies of apolipoprotein E (APOE) ε4 and rare missense variants in AD risk genes. A novel genome-wide significant locus (P < 5×10-8 ) was observed for clinical rpAD on chromosome 21 (rs2832546); 102 loci showed suggestive associations with pathology-confirmed rpAD (P < 1×10-5 ). DISCUSSION rpAD constitutes an extreme subtype of AD with distinct features. GWAS found previously known and novel loci associated with rpAD. Highlights Rapidly progressive Alzheimer's disease (rpAD) was defined with different criteria. Whole genome sequencing identified rare missense variants in rpAD. Novel variants were identified for clinical rpAD on chromosome 21.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Estudo de Associação Genômica Ampla
4.
Nat Rev Dis Primers ; 10(1): 14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424082

RESUMO

Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Animais , Bovinos , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Proteínas Priônicas/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Encéfalo/patologia
5.
Mov Disord Clin Pract ; 11(4): 411-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258626

RESUMO

BACKGROUND: Genetic prion diseases, including Gerstmann-Sträussler-Scheinker disease (GSS), are extremely rare, fatal neurodegenerative disorders, often associated with progressive ataxia and cognitive/neuropsychiatric symptoms. GSS typically presents as a rapidly progressive cerebellar ataxia, associated with cognitive decline. Late-onset cases are rare. OBJECTIVE: To compare a novel GSS phenotype with six other cases and present pathological findings from a single case. METHODS: Case series of seven GSS patients, one proceeding to autopsy. RESULTS: Case 1 developed slowly progressive gait difficulties at age 71, mimicking a spinocerebellar ataxia, with a family history of balance problems in old age. Genome sequencing revealed a heterozygous c.392G > A (p.G131E) pathogenic variant and a c.395A > G resulting in p.129 M/V polymorphism in the PRNP gene. Probability analyses considering family history, phenotype, and a similar previously reported point mutation (p.G131V) suggest p.G131E as a new pathogenic variant. Clinical features and imaging of this case are compared with those six additional cases harboring p.P102L mutations. Autopsy findings of a case are described and were consistent with the prion pathology of GSS. CONCLUSIONS: We describe a patient with GSS with a novel p.G131E mutation in the PRNP gene, presenting with a late-onset, slowly progressive phenotype, mimicking a spinocerebellar ataxia, and six additional cases with the typical P102L mutation.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Príons , Ataxias Espinocerebelares , Humanos , Idoso , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Proteínas Priônicas/genética , Príons/genética , Ataxia Cerebelar/complicações , Ataxias Espinocerebelares/diagnóstico
6.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38979287

RESUMO

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, ~1% were transmitted by misfolded PrP, ~15% are inherited, and ~85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate focal initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of >5,000X across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a focal presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.

7.
PLoS One ; 19(7): e0304528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39079175

RESUMO

Human prion diseases are rare, transmissible and often rapidly progressive dementias. The most common type, sporadic Creutzfeldt-Jakob disease (sCJD), is highly variable in clinical duration and age at onset. Genetic determinants of late onset or slower progression might suggest new targets for research and therapeutics. We assembled and array genotyped sCJD cases diagnosed in life or at autopsy. Clinical duration (median:4, interquartile range (IQR):2.5-9 (months)) was available in 3,773 and age at onset (median:67, IQR:61-73 (years)) in 3,767 cases. Phenotypes were successfully transformed to approximate normal distributions allowing genome-wide analysis without statistical inflation. 53 SNPs achieved genome-wide significance for the clinical duration phenotype; all of which were located at chromosome 20 (top SNP rs1799990, pvalue = 3.45x10-36, beta = 0.34 for an additive model; rs1799990, pvalue = 9.92x10-67, beta = 0.84 for a heterozygous model). Fine mapping, conditional and expression analysis suggests that the well-known non-synonymous variant at codon 129 is the obvious outstanding genome-wide determinant of clinical duration. Pathway analysis and suggestive loci are described. No genome-wide significant SNP determinants of age at onset were found, but the HS6ST3 gene was significant (pvalue = 1.93 x 10-6) in a gene-based test. We found no evidence of genome-wide genetic correlation between case-control (disease risk factors) and case-only (determinants of phenotypes) studies. Relative to other common genetic variants, PRNP codon 129 is by far the outstanding modifier of CJD survival suggesting only modest or rare variant effects at other genetic loci.


Assuntos
Idade de Início , Síndrome de Creutzfeldt-Jakob , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Fenótipo , Genótipo
8.
JAMA Netw Open ; 7(4): e244266, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558141

RESUMO

Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Demência Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/psicologia , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Smartphone , Ensaios Clínicos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA