Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 140(4): 864-876, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27813122

RESUMO

Quercetin (Que) is an abundant flavonoid in the human diet and high-concentration food supplement with reported pro- and anti-carcinogenic activities. Topoisomerase II (TopoII) inhibition and subsequent DNA damage induction by Que was implicated in the mixed lineage leukemia gene (MLL) rearrangements that can induce infant and adult leukemias. This notion raised concerns regarding possible genotoxicities of Que in hematopoietic stem and progenitor cells (HSPCs). However, molecular targets mediating Que effects on DNA repair relevant to MLL translocations have not been defined. In this study we describe novel and potentially genotoxic Que activities in suppressing non-homologous end joining and homologous recombination pathways downstream of MLL cleavage. Using pharmacological dissection of DNA-PK, ATM and PI3K signalling we defined PI3K inhibition by Que with a concomitant decrease in the abundance of key DNA repair genes to be responsible for DNA repair inhibition. Evidence for the downstream TopoII-independent mutagenic potential of Que was obtained by documenting further increased frequencies of MLL rearrangements in human HSPCs concomitantly treated with Etoposide and Que versus single treatments. Importantly, by engaging a tissue engineered placental barrier, we have established the extent of Que transplacental transfer and hence provided the evidence for Que reaching fetal HSPCs. Thus, Que exhibits genotoxic effects in human HSPCs via different mechanisms when applied continuously and at high concentrations. In light of the demonstrated Que transfer to the fetal compartment our findings are key to understanding the mechanisms underlying infant leukemia and provide molecular markers for the development of safety values.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Leucemia/induzido quimicamente , Proteína de Leucina Linfoide-Mieloide/genética , Inibidores de Fosfoinositídeo-3 Quinase , Quercetina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Inibidores da Topoisomerase II/toxicidade , Adulto , Ácido Ascórbico/farmacologia , Técnicas de Cultura de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Relação Dose-Resposta a Droga , Etoposídeo/farmacologia , Feminino , Genisteína/farmacologia , Histonas/análise , Humanos , Lactente , Leucemia/genética , Troca Materno-Fetal , Fosfatidilinositol 3-Quinases/fisiologia , Gravidez
2.
Nat Commun ; 14(1): 5871, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735473

RESUMO

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


Assuntos
Leucemia , Fatores de Transcrição , Animais , Masculino , Camundongos , Proteínas Correpressoras , Regulação da Expressão Gênica , Genes Reguladores
3.
Oncogene ; 38(17): 3103-3118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622338

RESUMO

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.


Assuntos
Antineoplásicos/administração & dosagem , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Espironolactona/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Espironolactona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Leukemia ; 33(8): 2061-2077, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30705411

RESUMO

Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/fisiologia , Elementos Facilitadores Genéticos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Regulador Transcricional ERG/genética
5.
Cancer Res ; 79(15): 3862-3876, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175119

RESUMO

Acute leukemia is a rapidly progressing blood cancer with low survival rates. Unfavorable prognosis is attributed to insufficiently characterized subpopulations of leukemia stem cells (LSC) that drive chemoresistance and leukemia relapse. Here we utilized a genetic reporter that assesses stemness to enrich and functionally characterize LSCs. We observed heterogeneous activity of the ERG+85 enhancer-based fluorescent reporter in human leukemias. Cells with high reporter activity (tagBFPHigh) exhibited elevated expression of stemness and chemoresistance genes and demonstrated increased clonogenicity and resistance to chemo- and radiotherapy as compared with their tagBFPNeg counterparts. The tagBFPHigh fraction was capable of regenerating the original cellular heterogeneity and demonstrated increased invasive ability. Moreover, the tagBFPHigh fraction was enriched for leukemia-initiating cells in a xenograft assay. We identified the ubiquitin hydrolase USP9X as a novel ERG transcriptional target that sustains ERG+85-positive cells by controlling ERG ubiquitination. Therapeutic targeting of USP9X led to preferential inhibition of the ERG-dependent leukemias. Collectively, these results characterize human leukemia cell functional heterogeneity and suggest that targeting ERG via USP9X inhibition may be a potential treatment strategy in patients with leukemia. SIGNIFICANCE: This study couples a novel experimental tool with state-of-the-art approaches to delineate molecular mechanisms underlying stem cell-related characteristics in leukemia cells.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Oncogênicas/metabolismo , Regulador Transcricional ERG/metabolismo , Transplante Heterólogo/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Camundongos , Análise de Sobrevida , Transfecção
6.
Sci Rep ; 8(1): 6071, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666389

RESUMO

Failure to precisely repair DNA damage in self-renewing Hematopoietic Stem and early Progenitor Cells (HSPCs) can disrupt normal hematopoiesis and promote leukemogenesis. Although HSPCs are widely considered a target of ionizing radiation (IR)-induced hematopoietic injury, definitive data regarding cell death, DNA repair, and genomic stability in these rare quiescent cells are scarce. We found that irradiated HSPCs, but not lineage-committed progenitors (CPs), undergo rapid ATM-dependent apoptosis, which is suppressed upon interaction with bone-marrow stroma cells. Using DNA repair reporters to quantify mutagenic Non-Homologous End Joining (NHEJ) processes, we found that HSPCs exhibit reduced NHEJ activities in comparison with CPs. HSPC-stroma interactions did not affect the NHEJ capacity of HSPCs, emphasizing its cell autonomous regulation. We noted diminished expression of multiple double strand break (DSB) repair transcripts along with more persistent 53BP1 foci in irradiated HSPCs in comparison with CPs, which can account for low NHEJ activity and its distinct control in HSPCs. Finally, we documented clonal chromosomal aberrations in 10% of IR-surviving HSPCs. Taken together, our results revealed potential mechanisms contributing to the inherent susceptibility of human HSPC to the cytotoxic and mutagenic effects of DNA damage.


Assuntos
Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Células Cultivadas , Instabilidade Genômica/efeitos da radiação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cariótipo , Radiação Ionizante
7.
Oncotarget ; 8(10): 16712-16727, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28187429

RESUMO

The molecular determinants governing escape of Acute Myeloid Leukemia (AML) cells from DNA damaging therapy remain poorly defined and account for therapy failures. To isolate genes responsible for leukemia cells regeneration following multiple challenges with irradiation we performed a genome-wide shRNA screen. Some of the isolated hits are known players in the DNA damage response (e.g. p53, CHK2), whereas other, e.g. SMYD2 lysine methyltransferase (KMT), remains uncharacterized in the AML context. Here we report that SMYD2 knockdown confers relative resistance to human AML cells against multiple classes of DNA damaging agents. Induction of the transient quiescence state upon SMYD2 downregulation correlated with the resistance. We revealed that diminished SMYD2 expression resulted in the upregulation of the related methyltransferase SET7/9, suggesting compensatory relationships. Indeed, pharmacological targeting of SET7/9 with (R)-PFI2 inhibitor preferentially inhibited the growth of cells expressing low levels of SMYD2.Finally, decreased expression of SMYD2 in AML patients correlated with the reduced sensitivity to therapy and lower probability to achieve complete remission. We propose that the interplay between SMYD2 and SET7/9 levels shifts leukemia cells from growth to quiescence state that is associated with the higher resistance to DNA damaging agents and rationalize SET7/9 pharmacological targeting in AML.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Processos de Crescimento Celular/fisiologia , Dano ao DNA/fisiologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , RNA Interferente Pequeno/genética , Transfecção
8.
Oncotarget ; 7(22): 31847-61, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-26870993

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by extremely heterogeneous molecular and biologic abnormalities that hamper the development of effective targeted treatment modalities. While AML cells are highly sensitive to cytotoxic Ca2+ overload, the feasibility of Ca2+- targeted therapy of this disease remains unclear. Here, we show that apoptotic response of AML cells to the synergistically acting polyphenols curcumin (CUR) and carnosic acid (CA), combined at low, non-cytotoxic doses of each compound was mediated solely by disruption of cellular Ca2+ homeostasis. Specifically, activation of caspase cascade in CUR+CA-treated AML cells resulted from sustained elevation of cytosolic Ca2+ (Ca2+cyt) and was not preceded by endoplasmic reticulum stress or mitochondrial damage. The CUR+CA-induced Ca2+cyt rise did not involve excessive influx of extracellular Ca2+ but, rather, occurred due to massive Ca2+ release from intracellular stores concomitant with inhibition of Ca2+cyt extrusion through the plasma membrane. Notably, the CUR+CA combination did not alter Ca2+ homeostasis and viability in non-neoplastic hematopoietic cells, suggesting its cancer-selective action. Most importantly, co-administration of CUR and CA to AML-bearing mice markedly attenuated disease progression in two animal models. Collectively, our results provide the mechanistic and translational basis for further characterization of this combination as a prototype of novel Ca2+-targeted pharmacological tools for the treatment of AML.


Assuntos
Abietanos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Curcumina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Caspases/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HL-60 , Homeostase , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Fatores de Tempo , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA