Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nucleic Acids Res ; 49(5): 2759-2776, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33591310

RESUMO

The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
2.
Nucleic Acids Res ; 49(20): 11708-11727, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718714

RESUMO

RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Recombinação Homóloga , Proteínas de Ligação a RNA/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Cisplatino/uso terapêutico , Cisplatino/toxicidade , Feminino , Células HCT116 , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Brain ; 144(10): 3061-3077, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33914858

RESUMO

WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.


Assuntos
Epilepsia/genética , Deleção de Genes , Bainha de Mielina/genética , Neurônios/fisiologia , Oxidorredutase com Domínios WW/deficiência , Oxidorredutase com Domínios WW/genética , Animais , Encéfalo/patologia , Técnicas de Cocultura , Epilepsia/patologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/patologia , Neurônios/patologia , Organoides , Oxidorredutase com Domínios WW/antagonistas & inibidores
4.
Neurobiol Dis ; 160: 105529, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634460

RESUMO

Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Células Piramidais/fisiologia , Oxidorredutase com Domínios WW/genética , Animais , Epilepsia/genética , Camundongos , Camundongos Knockout
5.
Int J Cancer ; 145(11): 3052-3063, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31018244

RESUMO

Osteosarcoma (OS) is an aggressive malignancy affecting mostly children and adolescents. MicroRNAs (miRNAs) play important roles in OS development and progression. Here we found that miR-16-1-3p and miR-16-2-3p "passenger" strands, as well as the "lead" miR-16-5p strand, are frequently downregulated and possess strong tumor suppressive functions in human OS. Furthermore, we report different although strongly overlapping functions for miR-16-1-3p and miR-16-2-3p in OS cells. Ectopic expression of these miRNAs affected primary tumor growth, metastasis seeding and chemoresistance and invasiveness of human OS cells. Loss-of-function experiments verified tumor suppressive functions of these miRNAs at endogenous levels of expression. Using RNA immunoprecipitation (RIP) assays, we identify direct targets of miR-16-1-3p and miR-16-2-3p in OS cells. Moreover, validation experiments identified FGFR2 as a direct target for miR-16-1-3p and miR-16-2-3p. Overall, our findings underscore the importance of passenger strand miRNAs, at least some, in osteosarcomagenesis.


Assuntos
Regulação para Baixo , Neoplasias Pulmonares/secundário , MicroRNAs/genética , Osteonecrose/patologia , Osteossarcoma/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Transplante de Neoplasias , Osteonecrose/genética , Osteossarcoma/genética
6.
PLoS Genet ; 12(12): e1006436, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977694

RESUMO

The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.


Assuntos
Carcinogênese/genética , Sítios Frágeis do Cromossomo/genética , Genes Supressores de Tumor , Neoplasias/genética , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Neoplasias/patologia
7.
Proc Natl Acad Sci U S A ; 111(44): E4716-25, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331887

RESUMO

Genomic instability is a hallmark of cancer. The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role of WWOX in DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63-linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instability and provide an advantage for clonal expansion of neoplastic cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Neoplasias/metabolismo , Oxirredutases/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade Genômica/genética , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Oxirredutases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Oxidorredutase com Domínios WW
8.
PLoS Genet ; 10(10): e1004652, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340791

RESUMO

Metastasis is the principal cause of cancer death and occurs through multiple, complex processes that involve the concerted action of many genes. A number of studies have indicated that the Fragile Histidine Triad (FHIT) gene product, FHIT, functions as a tumor suppressor in a variety of common human cancers. Although there are suggestions of a role for FHIT loss in progression of various cancers, a role for such loss in metastasis has not been defined. Here, via in vivo and in vitro assays, we reveal that the enforced expression of FHIT significantly suppresses metastasis, accompanied by inhibition of the epithelial-mesenchymal transition (EMT), a process involved in metastasis through coordinate modulation of EMT-related genes. Specifically, miR-30c, a FHIT-upregulated microRNA, contributes to FHIT function in suppression of EMT and metastasis by directly targeting metastasis genes Metadherin (MTDH), High-mobility group AT-hook 2 (HMGA2), and the mesenchymal markers, Vimentin (VIM) and Fibronectin (FN1), in human lung cancer. Finally, we demonstrate that the expression pattern of FHIT and miR-30c is inversely correlated with that of MTDH and HMGA2 in normal tissue, non-metastatic and metastatic tumors, serving as a potential biomarker for metastasis in lung cancer.


Assuntos
Hidrolases Anidrido Ácido/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Hidrolases Anidrido Ácido/biossíntese , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Fibronectinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/biossíntese , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana , MicroRNAs/biossíntese , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Ligação a RNA , Vimentina/biossíntese
9.
J Biol Chem ; 290(52): 30728-35, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26499798

RESUMO

WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.


Assuntos
Sistema Nervoso Central/enzimologia , Neoplasias/enzimologia , Oxirredutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Neoplasias/genética , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
10.
Future Oncol ; 12(13): 1623-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27072870

RESUMO

Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Invasividade Neoplásica/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Humanos
12.
J Biol Chem ; 289(13): 8865-80, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550385

RESUMO

WW domains are small modules present in regulatory and signaling proteins that mediate specific protein-protein interactions. The WW domain-containing oxidoreductase (WWOX) encodes a 46-kDa tumor suppressor that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. Based on its ligand recognition motifs, the WW domain family is classified into four groups. The largest one, to which WWOX belongs, recognizes ligands with a PPXY motif. To pursue the functional properties of the WW domains of WWOX, we employed mass spectrometry and phage display experiments to identify putative WWOX-interacting partners. Our analysis revealed that the first WW (WW1) domain of WWOX is the main functional interacting domain. Furthermore, our study uncovered well known and new PPXY-WW1-interacting partners and shed light on novel LPXY-WW1-interacting partners of WWOX. Many of these proteins are components of multiprotein complexes involved in molecular processes, including transcription, RNA processing, tight junction, and metabolism. By utilizing GST pull-down and immunoprecipitation assays, we validated that WWOX is a substrate of the E3 ubiquitin ligase ITCH, which contains two LPXY motifs. We found that ITCH mediates Lys-63-linked polyubiquitination of WWOX, leading to its nuclear localization and increased cell death. Our data suggest that the WW1 domain of WWOX provides a versatile platform that links WWOX with individual proteins associated with physiologically important networks.


Assuntos
Oxirredutases/química , Oxirredutases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Células HEK293 , Humanos , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitinação , Oxidorredutase com Domínios WW
13.
Blood ; 121(2): 351-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23160471

RESUMO

T-cell leukemia/lymphoma 1 (TCL1) is an oncogene overexpressed in T-cell prolymphocytic leukemia and in B-cell malignancies including B-cell chronic lymphocytic leukemia and lymphomas. To date, only a limited number of Tcl1-interacting proteins that regulate its oncogenic function have been identified. Prior studies used a proteomic approach to identify a novel interaction between Tcl1 with Ataxia Telangiectasia Mutated. The association of Tcl1 and Ataxia Telangiectasia Mutated leads to activation of the NF-κB pathway. Here, we demonstrate that Tcl1 also interacts with heat shock protein (Hsp) 70. The Tcl1-Hsp70 complex was validated by coimmunoprecipitation experiments. In addition, we report that Hsp70, a protein that plays a critical role in the folding and maturation of several oncogenic proteins, associates with Tcl1 protein and stabilizes its expression. The inhibition of the ATPase activity of Hsp70 results in ubiquitination and proteasome-dependent degradation of Tcl1. The inhibition of Hsp70 significantly reduced the growth of lymphoma xenografts in vivo and down-regulated the expression of Tcl1 protein. Our findings reveal a functional interaction between Tcl1 and Hsp70 and identify Tcl1 as a novel Hsp70 client protein. These findings suggest that inhibition of Hsp70 may represent an alternative effective therapy for chronic lymphocytic leukemia and lymphomas via its ability to inhibit the oncogenic functions of Tcl1.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Immunoblotting , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Leucemia/genética , Linfoma/genética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas/genética , Transfecção , Transplante Heterólogo
14.
Cell Mol Life Sci ; 71(23): 4589-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245215

RESUMO

The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.


Assuntos
Transformação Celular Neoplásica/genética , Sítios Frágeis do Cromossomo , Instabilidade Genômica , Neoplasias/genética , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredutases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW
15.
Proc Natl Acad Sci U S A ; 109(14): 5316-21, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431589

RESUMO

MicroRNAs (miRNAs) are increasingly implicated in regulating cancer initiation and progression. In this study, two miRNAs, miR-25 and -32, are identified as p53-repressed miRNAs by p53-dependent negative regulation of their transcriptional regulators, E2F1 and MYC. However, miR-25 and -32 result in p53 accumulation by directly targeting Mdm2 and TSC1, which are negative regulators of p53 and the mTOR (mammalian target of rapamycin) pathway, respectively, leading to inhibition of cellular proliferation through cell cycle arrest. Thus, there is a recurrent autoregulatory circuit involving expression of p53, E2F1, and MYC to regulate the expression of miR-25 and -32, which are miRNAs that, in turn, control p53 accumulation. Significantly, overexpression of transfected miR-25 and -32 in glioblastoma multiforme cells inhibited growth of the glioblastoma multiforme cells in mouse brain in vivo. The results define miR-25 and -32 as positive regulators of p53, underscoring their role in tumorigenesis in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular , Proliferação de Células , Fator de Transcrição E2F1/fisiologia , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transcrição Gênica , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
16.
Blood ; 119(1): 180-7, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22065599

RESUMO

The T-cell leukemia/lymphoma 1 (TCL1) oncogene is a target of chromosomal translocations and inversions at 14q31.2, and its rearrangement in T cells causes T-cell prolymphocytic leukemias. TCL1 dysregulation in B cells is responsible for the development of an aggressive form of chronic lymphocytic leukemia (CLL), the most common human leukemia. We have investigated the mechanisms underlying the oncogenic functions of Tcl1 protein using a mass spectrometry approach and have identified Atm (ataxia-telangiectasia mutated) as a candidate Tcl1-interacting protein. The Tcl1-Atm complex formation was validated by coimmunoprecipitation experiments. Importantly, we show that the association of Atm with Tcl1 leads to enhanced IκBα phosphorylation and ubiquitination and subsequent activation of the NF-κB pathway. Our findings reveal functional cross-talk between Atm and Tcl1 and provide evidence for a novel pathway that could be targeted in leukemias and lymphomas.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leucemia de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas I-kappa B/metabolismo , Imunoprecipitação , Leucemia de Células B/genética , Leucemia Linfocítica Crônica de Células B/genética , Luciferases/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Supressoras de Tumor/genética
17.
Curr Osteoporos Rep ; 12(4): 496-506, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25260661

RESUMO

Epigenetic regulation utilizes different mechanisms to convey heritable traits to progeny cells that are independent of DNA sequence, including DNA silencing, post-translational modifications of histone proteins, and the post-transcriptional modulation of RNA transcript levels by non-coding RNAs. Although long non-coding RNAs have recently emerged as important regulators of gene imprinting, their functions during osteogenesis are as yet unexplored. In contrast, microRNAs (miRNAs) are well characterized for their control of osteogenic and osteoclastic pathways; thus, further defining how gene regulatory networks essential for skeleton functions are coordinated and finely tuned through the activities of miRNAs. Roles of miRNAs are constantly expanding as new studies uncover associations with skeletal disorders. The distinct functions of epigenetic regulators and evidence for integrating their activities to control normal bone gene expression and bone disease will be presented. In addition, potential for using "signature miRNAs" to identify, manage, and therapeutically treat osteosarcoma will be discussed in this review.


Assuntos
Doenças Ósseas/fisiopatologia , Osso e Ossos/fisiologia , Epigênese Genética/fisiologia , Homeostase/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Ósseas/fisiopatologia , Humanos , MicroRNAs/fisiologia , Osteoblastos/fisiologia , Osteossarcoma/fisiopatologia
18.
iScience ; 27(3): 109082, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375218

RESUMO

DNA double-stranded breaks (DSBs) pose a significant threat to genomic integrity, and their generation during essential cellular processes like transcription remains poorly understood. In this study, we employ several techniques to map DSBs, R-loops, and topoisomerase 1 cleavage complex (TOP1cc) to comprehensively investigate the interplay between transcription, DSBs, topoisomerase 1 (TOP1), and R-loops. Our findings reveal the presence of DSBs at highly expressed genes enriched with TOP1 and R-loops. Remarkably, transcription-associated DSBs at these loci are significantly reduced upon depletion of R-loops and TOP1, uncovering the pivotal roles of TOP1 and R-loops in transcriptional DSB formation. By elucidating the intricate interplay between TOP1cc trapping, R-loops, and DSBs, our study provides insights into the mechanisms underlying transcription-associated genomic instability. Moreover, we establish a link between transcriptional DSBs and early molecular changes driving cancer development, highlighting the distinct etiology and molecular characteristics of driver mutations compared to passenger mutations.

19.
STAR Protoc ; 5(2): 103059, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717906

RESUMO

Physiological double-stranded breaks (DSBs) are a major source of genomic instability. Here, we present a protocol for mapping physiological DSBs by in-suspension break labeling in situ and sequencing (sBLISS) in a single-nucleotide resolution. We describe steps for cell fixation, labeling of DSBs, DNA isolation followed by in vitro transcription (IVT), reverse transcription, and library preparation. sBLISS provides a map of DSBs over the genome and can be used to study the role of different factors in DSB formation. For complete details on the use and execution of this protocol, please refer to Hidmi et al.1.


Assuntos
Quebras de DNA de Cadeia Dupla , Humanos , Análise de Sequência de DNA/métodos , DNA/genética , Instabilidade Genômica/genética
20.
Cell Death Discov ; 10(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499540

RESUMO

Breast cancer is the leading cause of cancer-related deaths in women worldwide, with the basal-like or triple-negative breast cancer (TNBC) subtype being particularly aggressive and challenging to treat. Understanding the molecular mechanisms driving the development and progression of TNBC is essential. We previously showed that WW domain-containing oxidoreductase (WWOX) is commonly inactivated in TNBC and is implicated in the DNA damage response (DDR) through ATM and ATR activation. In this study, we investigated the interplay between WWOX and BRCA1, both frequently inactivated in TNBC, on mammary tumor development and on DNA double-strand break (DSB) repair choice. We generated and characterized a transgenic mouse model (K14-Cre;Brca1fl/fl;Wwoxfl/fl) and observed that mice lacking both WWOX and BRCA1 developed basal-like mammary tumors and exhibited a decrease in 53BP1 foci and an increase in RAD51 foci, suggesting impaired DSB repair. We examined human TNBC cell lines harboring wild-type and mutant BRCA1 and found that WWOX expression promoted NHEJ repair in cells with wild-type BRCA1. Our findings suggest that WWOX and BRCA1 play an important role in DSB repair pathway choice in mammary epithelial cells, underscoring their functional interaction and significance in breast carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA