Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310342

RESUMO

SUMMARY: Pedigree-based analyses' prime role is to unravel relationships between individuals in breeding programs and germplasms. This is critical information for decoding the genetics underlying main inherited traits of relevance, and unlocking the genotypic variability of a species to carry out genomic selections and predictions. Despite the great interest, current lineage visualizations become quite limiting in terms of public display, exploration, and tracing of traits up to ancestral donors. PERSEUS is a user-friendly, intuitive, and interactive web-based tool for pedigree visualizations represented as directed graph networks distributed using a force-repulsion method. The visualizations do not only showcase individual relationships among accessions, but also facilitate a seamless search and download of phenotypic traits along the pedigrees. PERSEUS is a promising tool for breeders and scientists, advantageous for evolutionary, genealogy, and diversity analyses among related accessions and species. AVAILABILITY AND IMPLEMENTATION: PERSEUS is freely accessible at https://bioinformatics.cragenomica.es/perseus and GitHub code is available at https://github.com/aranzana-lab/PERSEUS.


Assuntos
Genômica , Software , Humanos , Linhagem , Genoma , Internet
2.
Hortic Res ; 11(2): uhad294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487296

RESUMO

Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.

3.
Hortic Res ; 11(6): uhae106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883330

RESUMO

The vast majority of traditional almond varieties are self-incompatible, and the level of variability of the species is very high, resulting in a high-heterozygosity genome. Therefore, information on the different haplotypes is particularly relevant to understand the genetic basis of trait variability in this species. However, although reference genomes for several almond varieties exist, none of them is phased and has genome information at the haplotype level. Here, we present a phased assembly of genome of the almond cv. Texas. This new assembly has 13% more assembled sequence than the previous version of the Texas genome and has an increased contiguity, in particular in repetitive regions such as the centromeres. Our analysis shows that the 'Texas' genome has a high degree of heterozygosity, both at SNPs, short indels, and structural variants level. Many of the SVs are the result of heterozygous transposable element insertions, and in many cases, they also contain genic sequences. In addition to the direct consequences of this genic variability on the presence/absence of genes, our results show that variants located close to genes are often associated with allele-specific gene expression, which highlights the importance of heterozygous SVs in almond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA