Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hum Genet ; 67(12): 721-728, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36171295

RESUMO

Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel-Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.


Assuntos
Fosfatidilinositol 3-Quinases , Malformações Vasculares , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
2.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806092

RESUMO

Adult mammalian wounds leave visible scars, whereas skin wounds in developing mouse fetuses are scarless until a certain point in development when complete regeneration occurs, including the structure of the dermis and skin appendages. Analysis of the molecular mechanisms at this transition will provide clues for achieving scarless wound healing. The fibroblast growth factor (FGF) family is a key regulator of inflammation and fibrosis during wound healing. We aimed to determine the expression and role of FGF family members in fetal wound healing. ICR mouse fetuses were surgically wounded at embryonic day 13 (E13), E15, and E17. Expression of FGF family members and FGF receptor (FGFR) in tissue samples from these fetuses was evaluated using in situ hybridization and reverse transcription-quantitative polymerase chain reaction. Fgfr1 was downregulated in E15 and E17 wounds, and its ligand Fgf7 was upregulated in E13 and downregulated in E15 and E17. Recombinant FGF7 administration in E15 wounds suppressed fibrosis and promoted epithelialization at the wound site. Therefore, the expression level of Fgf7 may correlate with scar formation in late mouse embryos, and external administration of FGF7 may represent a therapeutic option to suppress fibrosis and reduce scarring.


Assuntos
Fator 7 de Crescimento de Fibroblastos/metabolismo , Cicatrização , Animais , Cicatriz/patologia , Feto/metabolismo , Fibrose , Mamíferos , Camundongos , Camundongos Endogâmicos ICR , Pele/metabolismo
3.
Wound Repair Regen ; 23(5): 759-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26082356

RESUMO

Healthcare providers treating wounds have difficulties assessing the prognosis of patients with critical limb ischemia who had been discharged after complete healing of major amputation wounds. The word "major" in "major amputation" gives the impression of "being more severe" than "minor amputation." Therefore, even if wounds are healed after major amputation, they imagine that prognosis after major amputation would be poorer than that after minor amputation. We investigated the prognosis of diabetic nephropathy patients 2 years after amputations. Those patients underwent dialysis as well as amputation following percutaneous transluminal angioplasty for their foot wounds. They were ambulatory prior to these surgeries. Among 56 cases of minor amputation, 45 were males and 11 were females, and mortality was 41.1%. The mortality of cases with and without a coronary intervention history was 53.1% and 25.0%, respectively (p = 0.034). Among 10 cases of major amputation, 9 were males and 1 was female, and mortality was 60%. The mortality of cases with and without a coronary intervention history was 75.0% and 0%, respectively. Although we predicted poor prognosis in cases with major amputation, there was no significant difference in mortality 2 years after amputations (p = 0.267). Thus far poor prognosis has been reported for major amputation. It might be due to inclusion of the following patients: patients with wounds proximal to ankle joints, patients with extensive gangrene spreading to the lower legs, patients with septicemia from wound infection and who died around the time of operation, and patients with malnutrition. The results of our present study showed that the outcomes at 2 years postoperatively were similar between patients with major amputations and those with minor amputations, if surgical wounds were able to heal. We should not estimate the prognosis by the level of amputation, rather we should consider the effect of coronary intervention history on prognosis.


Assuntos
Amputação Cirúrgica/métodos , Isquemia/cirurgia , Extremidade Inferior/irrigação sanguínea , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Isquemia/diagnóstico , Isquemia/mortalidade , Japão/epidemiologia , Extremidade Inferior/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Prognóstico , Índice de Gravidade de Doença , Taxa de Sobrevida/tendências , Cicatrização
4.
Genesis ; 52(7): 702-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753090

RESUMO

ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5-8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ-line deletion produced from the floxed allele by Cre-lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1-Cre mice. Unlike other ADAMTS single knockouts, limb-specific Adamts9 deletion resulted in soft-tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non-redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9.


Assuntos
Proteínas ADAM/genética , Alelos , Sindactilia/genética , Proteína ADAMTS9 , Animais , Éxons , Extremidades/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
5.
J Biol Chem ; 288(3): 1907-17, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23233679

RESUMO

Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.


Assuntos
Proteínas ADAM/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Regeneração , Versicanas/metabolismo , Proteínas ADAM/genética , Proteínas ADAMTS , Proteína ADAMTS5 , Animais , Comunicação Celular , Diferenciação Celular , Fusão Celular , Células Cultivadas , Embrião de Mamíferos , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/ultraestrutura , Mioblastos/citologia , Mioblastos/ultraestrutura , RNA Mensageiro/biossíntese , Trombospondinas/química
6.
Sci Rep ; 14(1): 10854, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740788

RESUMO

Unlike adult mammalian wounds, early embryonic mouse skin wounds completely regenerate and heal without scars. Analysis of the underlying molecular mechanism will provide insights into scarless wound healing. Twist2 is an important regulator of hair follicle formation and biological patterning; however, it is unclear whether it plays a role in skin or skin appendage regeneration. Here, we aimed to elucidate Twist2 expression and its role in fetal wound healing. ICR mouse fetuses were surgically wounded on embryonic day 13 (E13), E15, and E17, and Twist2 expression in tissue samples from these fetuses was evaluated via in situ hybridization, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction. Twist2 expression was upregulated in the dermis of E13 wound margins but downregulated in E15 and E17 wounds. Twist2 knockdown on E13 left visible marks at the wound site, inhibited regeneration, and resulted in defective follicle formation. Twist2-knockdown dermal fibroblasts lacked the ability to undifferentiate. Furthermore, Twist2 hetero knockout mice (Twist + /-) formed visible scars, even on E13, when all skin structures should regenerate. Thus, Twist2 expression correlated with skin texture formation and hair follicle defects in late mouse embryos. These findings may help develop a therapeutic strategy to reduce scarring and promote hair follicle regeneration.


Assuntos
Feto , Folículo Piloso , Regeneração , Pele , Proteína 2 Relacionada a Twist , Cicatrização , Animais , Folículo Piloso/metabolismo , Camundongos , Cicatrização/genética , Cicatrização/fisiologia , Feto/metabolismo , Pele/metabolismo , Proteína 2 Relacionada a Twist/metabolismo , Proteína 2 Relacionada a Twist/genética , Camundongos Knockout , Camundongos Endogâmicos ICR , Feminino , Fibroblastos/metabolismo , Proteínas Repressoras , Proteína 1 Relacionada a Twist
7.
Lymphat Res Biol ; 22(1): 27-36, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112724

RESUMO

Background: The natural history of venous malformation (VM) and Klippel-Trenaunay Syndrome (KTS) has not been quantitatively studied. To obtain benchmarks to guide designing clinical trials to assess safety and efficacy of novel drug candidates, the clinical course of the patients was followed for 6 months. Methods and Results: This is a multicenter prospective observational study evaluating the change rate in lesion volume from baseline with magnetic resonance images, as the primary endpoint. In addition, disease severities, performance status (PS), pain visual analog scale (VAS) score, quality of life (QoL), infections, and coagulation markers were also evaluated. Thirty-four patients (VM = 17, KTS = 17, 1-53 of age; median 15.9 years) with measurable lesion volume were analyzed. There was no statistically significant difference in the lesion volume between baseline and day 180, and the mean change rate (standard deviation) was 1.06 (0.28). There were no baseline characteristics that affected the change in lesion volume over 6 months. However, there were patients who showed more than 20% volume change and it was suggested that the lesion volume was largely impacted by local infection. There were no statistically significant changes in pain VAS score, severity, PS, QoL score, D-dimer, and platelet count over 6 months within all patients analyzed. Conclusion: The results showed the representative natural course of VM and KTS for a 6-month period with objective change of lesion volume and other factors, suggesting that it is scientifically reasonable to conduct a Phase 2 proof-of-concept study without a placebo arm, using the results of this study as the control. Clinical Trial Registration: NCT04285723, NCT04589650.


Assuntos
Síndrome de Klippel-Trenaunay-Weber , Malformações Vasculares , Humanos , Síndrome de Klippel-Trenaunay-Weber/diagnóstico , Síndrome de Klippel-Trenaunay-Weber/diagnóstico por imagem , Dor , Estudos Prospectivos , Qualidade de Vida , Malformações Vasculares/diagnóstico , Malformações Vasculares/diagnóstico por imagem , Ensaios Clínicos como Assunto
8.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830884

RESUMO

Scar treatments include fractional laser treatment, cell transplantation, surgery, skin needling, and dermal fillers. Fractional laser treatments are used to reduce scarring and blurring. Cell transplantation is promising, with mature fibroblasts and adipose-derived stem cells being used clinically, while embryonic fibroblasts are used experimentally. Herein, we developed a combination of ablative CO2 (carbon dioxide) fractional laser and cell transplantation for the treatment of scars. Eight-week-old male C57Bl/6 mice were used to create a full-layer skin defect in the back skin and create scars. The scar was then irradiated using a CO2 fractional laser. The cells were then transplanted onto the scar surface and sealed with a film agent. The transplanted cells were GFP-positive murine fetal fibroblasts (FB), fetal fibroblasts with a long-term sphere-forming culture (LS), and fetal skin with a short-term sphere-forming culture (SS). After transplantation, green fluorescent protein (GFP)-positive cells were scattered in the dermal papillary layer and subcutis in all the groups. LS significantly reduced the degree of scarring, which was closest to normal skin. In conclusion, the combination of ablative fractional laser irradiation and fetal fibroblast transplantation allowed us to develop new methods for scar treatment.

9.
Case Rep Oncol ; 16(1): 331-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497423

RESUMO

Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive intermediate soft tissue neoplasm that occurs in the dermis. DFSP generally occurs in young to middle-aged adults and rarely in infancy. Because of its extreme rarity, DFSP is difficult to diagnose and treat, especially when it occurs in infancy. In this paper, we reported a case of infantile DFSP in which we performed additional wide resection with a 3-cm horizontal margin for a mass that had previously undergone unplanned excision. No tumor recurrence has been seen for 3 years postoperatively. We suggest that the possibility of DFSP should always be considered when an enlarging superficial mass is identified on the trunk, even in an infant. Additionally, radical local treatment is as important for DFSP in infancy as it is for DFSP in adults, even after unplanned excision.

11.
Biomedicines ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37189631

RESUMO

Unlike adults, early developing fetuses can completely regenerate tissue, and replicating this could lead to the development of treatments to reduce scarring. Mice epidermal structures, including wound healing patterns, are regenerated until embryonic day (E) 13, leaving visible scars thereafter. These patterns require actin cable formation at the epithelial wound margin through AMP-activated protein kinase (AMPK) activation. We aimed to investigate whether the administration of compound 13 (C13), a recently discovered AMPK activator, to the wound could reproduce this actin remodeling and skin regeneration pattern through its AMPK activating effect. The C13 administration resulted in partial formations of actin cables, which would normally result in scarring, and scar reduction during the healing of full-layer skin defects that occurred in E14 and E15 fetuses. Furthermore, C13 was found to cause AMPK activation in these embryonic mouse epidermal cells. Along with AMPK activation, Rac1 signaling, which is involved in leaflet pseudopodia formation and cell migration, was suppressed in C13-treated wounds, indicating that C13 inhibits epidermal cell migration. This suggests that actin may be mobilized by C13 for cable formation. Administration of C13 to wounds may achieve wound healing similar to regenerative wound healing patterns and may be a potential candidate for new treatments to heal scars.

12.
Biomedicines ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137571

RESUMO

Mammalian skin, including human and mouse skin, does not regenerate completely after injury; it is repaired, leaving a scar. However, it is known that skin wounds up to a certain stage of embryonic development can regenerate. The mechanism behind the transition from regeneration to scar formation is not fully understood. Panniculus carnosus muscle (PCM) is present beneath the dermal fat layer and is a very important tissue for wound contraction. In rodents, PCM is present throughout the body. In humans, on the other hand, it disappears and becomes a shallow fascia on the trunk. Fetal cutaneous wounds, including PCM made until embryonic day 13 (E13), regenerate completely, but not beyond E14. We visualized the previously uncharacterized development of PCM in the fetus and investigated the temporal and spatial changes in PCM at different developmental stages, ranging from full regeneration to non-regeneration. Furthermore, we report that E13 epidermal closure occurs through actin cables, which are bundles of actomyosin formed at wound margins. The wound healing process of PCM suggests that actin cables may also be associated with PCM. Our findings reveal that PCM regenerates through a similar mechanism.

13.
Biomedicines ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551853

RESUMO

Wounds on embryonic mouse fetuses regenerate up to embryonic day (E) 13, but after E14, the pattern is lost and a visible scar remains. We hypothesized that the sonic hedgehog (Shh), which is involved in patterning during development, is involved in the regeneration of texture. Embryos of ICR mice were surgically injured at E13, E14, and E15 and analyzed for the expression of Shh. For external Shh administration, recombinant Shh-containing slow-release beads were implanted in the wounds of mice. In contrast, cyclopamine was administered to wounds of adult mice to inhibit Shh. The expression of Shh was unaltered at E13, whereas it was upregulated in the epidermis of the wound from E14 onward. Implantation of recombinant Shh-containing beads into E13 wounds inhibited skin texture regeneration. Cyclopamine treatment inhibited epithelialization and thickening of the epidermis in the wounds of adult mice. In vitro, Shh promoted proliferation and inhibited the migration of epidermal keratinocytes through the activation of cyclin D proteins. Thus, our results suggested that the expression of Shh is involved in the regeneration of texture during wound healing, especially in epidermal keratinocyte migration and division, and could inhibit skin texture regeneration after E14.

14.
Front Immunol ; 13: 875407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664010

RESUMO

Background: Fibrotic scars are common in both human and mouse skin wounds. However, wound-induced hair neogenesis in the murine wounding models often results in regenerative repair response. Herein, we aimed to uncover cellular functional heterogeneity in dermis between fibrotic and regenerative wound healing fates. Methods: The expression matrix of single-cell RNA sequencing (scRNA-seq) data of fibrotic and regenerative wound dermal cells was filtered, normalized, and scaled; underwent principal components analysis; and further analyzed by Uniform Manifold Approximation and Projection (UMAP) for dimension reduction with the Seurat package. Cell types were annotated, and cell-cell communications were analyzed. The core cell population myofibroblast was identified and the biological functions of ligand and receptor genes between myofibroblast and macrophage were evaluated. Specific genes between fibrotic and regenerative myofibroblast and macrophage were identified. Temporal dynamics of myofibroblast and macrophage were reconstructed with the Monocle tool. Results: Across dermal cells, there were six cell types, namely, EN1-negative myofibroblasts, EN1-positive myofibroblasts, hematopoietic cells, macrophages, pericytes, and endothelial cells. Ligand and receptor genes between myofibroblasts and macrophages mainly modulated cell proliferation and migration, tube development, and the TGF-ß pathway. Specific genes that were differentially expressed in fibrotic compared to regenerative myofibroblasts or macrophages were separately identified. Specific genes between fibrotic and regenerative myofibroblasts were involved in the mRNA metabolic process and organelle organization. Specific genes between fibrotic and regenerative macrophages participated in regulating immunity and phagocytosis. We then observed the underlying evolution of myofibroblasts or macrophages. Conclusion: Collectively, our findings reveal that myofibroblasts and macrophages may alter the skin wound healing fate through modulating critical signaling pathways.


Assuntos
Células Endoteliais , Cicatrização , Animais , Derme/patologia , Fibrose , Ligantes , Camundongos , Análise de Sequência de RNA , Cicatrização/genética
15.
Plast Reconstr Surg Glob Open ; 10(4): e4245, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35425688

RESUMO

Background: Variations in skin healing capacities are observed during different murine embryonic developmental stages. Through embryonic day 16 (E16), embryos are able to regenerate dermal architecture following flank skin wounding; however, after E17, wounds heal incompletely, inducing scar formation. The regenerative ability of the E16 fetal dermis depends on the migration of dermal mesenchymal cells. Decorin is a small molecule known to affect tissue tensile strength, cell phenotype, and tissue repair, including skin wound healing. In the current study, we evaluated the expression and roles of decorin in wound healing. Methods: Surgical injury was induced at E16 and E17 in ICR mouse embryos. Decorin expression was evaluated in tissue samples from these embryos using immunohistochemistry and reverse transcription quantitative polymerase chain reaction. Cell migration assays were used to evaluate wound healing capability of separated dermal and fascial tissues. Results: Our results showed that decorin exhibited distinct expression patterns during wound healing at E16 versus E17. Additionally, decorin expression altered cell migration in vitro. Dermal and fascial mesenchymal cells were found to exhibit distinct migration patterns concomitant with altered decorin expression. Specifically, decorin inhibited migration and favored scar formation. Conclusion: Decorin expression may contribute to scar formation in the late stage of mouse embryos by inhibiting the migration of dermal mesenchymal cells.

16.
Dis Markers ; 2022: 8556593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069935

RESUMO

Cutaneous melanoma refers to a common skin tumor that is dangerous to health with a great risk of metastasis. Previous researches reported that autophagy is associated with the progression of cutaneous melanoma. Nevertheless, the role played by genes with a relation to autophagy (ARG) in the prediction of the course of metastatic cutaneous melanoma is still largely unknown. We observed that thirteen ARGs showed relations to overall survival (OS) in the Cox regression investigation based on a single variate. We developed 2-gene signature, which stratified metastatic cutaneous melanoma cases to groups at great and small risks. Cases suffering from metastatic cutaneous melanoma in the group at great risks had power OS compared with cases at small risks. The risk score, T phase, N phase, and age were proved to be individual factors in terms of the prediction of OS. Besides, the risk scores identified by the two ARGs were significantly correlated with metastatic cutaneous melanoma. Receiver operating characteristic (ROC) curve analysis demonstrated accurate predicting performance exhibited by the 2-gene signature. We also found that the immunization and stromal scores achieved by the group based on large risks were higher compared with those achieved by the group based on small risks. The metastatic cutaneous melanoma cases achieving the score based on small risks acquired greater expression of immune checkpoint molecules as compared with the high-risk group. In conclusion, the 2-ARG gene signature indicated a novel prognostic indicator for prognosis prediction of metastatic cutaneous melanoma, which served as an important tool for guiding the clinical treatment of cutaneous melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Autofagia/genética , Humanos , Melanoma/genética , Melanoma/terapia , Prognóstico , Curva ROC , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
17.
Plast Reconstr Surg Glob Open ; 10(9): e4533, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187276

RESUMO

The dermal panniculus carnosus (PC) muscle is critical for wound contraction in lower mammals and is a useful model of muscle regeneration owing to its high cellular metabolic turnover. During wound healing in mice, skin structures, including PC, are completely regenerated up to embryonic day (E) 13, but PC is only partially regenerated in fetuses or adult animals after E14. Nevertheless, the mechanisms underlying wound repair for complete regeneration in PC have not been fully elucidated. We hypothesized that retinoic acid (RA) signaling, which is involved in muscle differentiation, regulates PC regeneration. Methods: Surgical injury was induced in ICR mice on E13 and E14. RA receptor alpha (RARα) expression in tissue samples from embryos was evaluated using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. To evaluate the effects of RA on PC regeneration, beads soaked in all-trans RA (ATRA) were implanted in E13 wounds, and tissues were observed. The effects of RA on myoblast migration were evaluated using a cell migration assay. Results: During wound healing, RARα expression was enhanced at the cut surface in PCs of E13 wounds but was attenuated at the cut edge of E14 PCs. Implantation of ATRA-containing beads inhibited PC regeneration on E13 in a concentration-dependent manner. Treatment of myoblasts with ATRA inhibited cell migration. Conclusions: ATRA inhibits PC regeneration, and decreased RARα expression in wounds after E14 inhibits myoblast migration. Our findings may contribute to the development of therapies to promote complete wound regeneration, even in the muscle.

18.
Biomedicines ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36140233

RESUMO

Multiple transitions occur in the healing ability of the skin during embryonic development in mice. Embryos up to embryonic day 13 (E13) regenerate completely without a scar after full-thickness wounding. Then, up to E16, dermal structures can be formed, including skin appendages such as hair follicles. However, after E17, wound healing becomes incomplete, and scar formation is triggered. Lhx2 regulates the switch between maintenance and activation of hair follicle stem cells, which are involved in wound healing. Therefore, we investigated the role of Lhx2 in fetal wound healing. Embryos of ICR mice were surgically wounded at E13, E15, and E17, and the expression of Lhx2 along with mitotic (Ki67 and p63) and epidermal differentiation (keratin-10 and loricrin) markers was analyzed. The effect of Lhx2 knockdown on wound healing was observed. Lhx2 expression was not noticed in E13 due to the absence of folliculogenesis but was evident in the epidermal basal layer of E15 and E17 and at the base of E17 wounds, along with Ki67 and p63 expression. Furthermore, Lhx2 knockdown in E15 markedly prolonged wound healing and promoted clear scar formation. Therefore, Lhx2 expression is involved in cell division associated with wound healing and may contribute to scar formation in late embryos.

19.
Biomedicines ; 10(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35884841

RESUMO

Wnt proteins secrete glycoproteins that are involved in various cellular processes to maintain homeostasis during development and adulthood. However, the expression and role of Wnt in wound healing have not been fully documented. Our previous studies have shown that, in an early-stage mouse fetus, no scarring occurred after cutaneous wounding, and complete regeneration was achieved. In this study, the expression and localization of Wnt proteins in a mouse fetal-wound-healing model and their associations with scar formation were analyzed. Wnt-related molecules were detected by in-situ hybridization, immunostaining, and real-time polymerase chain reaction. The results showed altered expression of Wnt-related molecules during the wound-healing process. Moreover, scar formation was suppressed by Wnt inhibitors, suggesting that Wnt signaling may be involved in wound healing and scar formation. Thus, regulation of Wnt signaling may be a possible mechanism to control scar formation.

20.
Sci Rep ; 12(1): 15913, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151111

RESUMO

Up to a certain developmental stage, a fetus can completely regenerate wounds in the skin. To clarify the mechanism of fetal skin regeneration, identifying when the skin switches from fetal-type wound regeneration to adult-type wound repair is necessary. We hypothesized that this switch occurs at several time points and that complete skin regeneration requires epidermal-dermal interactions and the formation of actin cables. We compared normal skin and wound morphology at each developmental stage. We examined two parameters: epidermal texture and dermal structure. We found that the three-dimensional structure of the skin was completely regenerated in full-thickness skin incisions made before embryonic day (E) 13. However, the skin texture did not regenerate in wounds made after E14. We also found that the dermal structure regenerates up to E16, but wounds created after E17 heal as scars with dermal fibrosis. By controlling the activity of AMP-activated protein kinase and altering actin cable formation, we could regulate scar formation in utero. These findings may contribute to therapies that allow complete skin regeneration without scarring.


Assuntos
Proteínas Quinases Ativadas por AMP , Actinas , Regeneração , Pele , Animais , Cicatriz/patologia , Derme/patologia , Epiderme/patologia , Feto , Camundongos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA