Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Int J Neuropsychopharmacol ; 26(7): 501-512, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37243534

RESUMO

BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a major stress response system, and excessive HPA responses can impact major depressive disorder and suicide. We examined relationships between reported early-life adversity (ELA), recent-life stress (RLS), suicide, and corticotropin-releasing hormone (CRH), CRH binding protein, FK506-binding protein (FKBP5), glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in postmortem human prefrontal cortex (BA9), and anterior cingulate cortex (BA24). METHODS: Thirteen quadruplets, matched for sex, age, and postmortem interval and consisting of suicide decedents and healthy controls, were divided equally into those with and without ELA. ELA, RLS, and psychiatric diagnoses were determined by psychological autopsy. Protein levels were determined by western blots. RESULTS: There were no suicide- or ELA-related differences in CRH, CRH binding protein, GR, or FKBP5 in BA9 or BA24 and no interaction between suicide and ELA (P > .05). For BDNF, there was an interaction between suicide and ELA in BA24; suicides without ELA had less BDNF than controls without ELA, and controls with ELA had less BDNF than controls without ELA. CRH in BA9 and FKBP5 in anterior cingulate cortex correlated negatively with RLS. Least Absolute Shrinkage and Selection Operator logistic regression with cross-validation found combining BDNF, GR, and FKBP5 BA24 levels predicted suicide, but ELA did not contribute. A calculated "suicide risk score" using these measures had 71% sensitivity and 71% specificity. CONCLUSION: A dysregulated HPA axis is related to suicide but not with ELA. RLS was related to select HPA axis proteins in specific brain regions. BDNF appears to be dysregulated in a region-specific way with ELA and suicide.


Assuntos
Experiências Adversas da Infância , Transtorno Depressivo Maior , Suicídio , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas de Choque Térmico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo
2.
Brain ; 145(12): 4193-4201, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36004663

RESUMO

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Hipocampo , Neurogênese/fisiologia
3.
Int J Neuropsychopharmacol ; 23(5): 311-318, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32060512

RESUMO

BACKGROUND: Glutamate is an excitatory neurotransmitter binding to 3 classes of receptors, including the N-methyl, D-aspartate (NMDA) receptor. NMDA receptor binding is lower in major depression disorder and suicide. NMDA receptor blocking with ketamine can have antidepressant and anti-suicide effects. Early-life adversity (ELA) may cause glutamate-mediated excitotoxicity and is more common with major depression disorder and in suicide decedents. We sought to determine whether NMDA-receptor binding is altered with suicide and ELA. METHODS: A total 52 postmortem cases were organized as 13 quadruplets of suicide and non-suicide decedents matched for age, sex, and postmortem interval, with or without reported ELA (≤16 years). Tissue blocks containing dorsal prefrontal (BA8), dorsolateral prefrontal (BA9), or anterior cingulate (BA24) cortex were collected at autopsy. Psychiatrically healthy controls and suicide decedents underwent psychological autopsy to determine psychiatric diagnoses and details of childhood adversity. NMDA receptor binding was determined by quantitative autoradiography of [3H]MK-801 binding (displaced by unlabeled MK-801) in 20-µm-thick sections. RESULTS: [3H]MK-801 binding was not associated with suicide in BA8, BA9, or BA24. However, [3H]MK-801 binding with ELA was less in BA8, BA9, and BA24 independent of suicide (P < .05). [3H]MK-801 binding was not associated with age or postmortem interval in any brain region or group. CONCLUSIONS: Less NMDA receptor binding with ELA is consistent with the hypothesis that stress can cause excitotoxicity via excessive glutamate, causing either NMDA receptor downregulation or less receptor binding due to neuron loss consequent to the excitotoxicity.


Assuntos
Experiências Adversas da Infância/psicologia , Giro do Cíngulo/química , Córtex Pré-Frontal/química , Receptores de N-Metil-D-Aspartato/análise , Suicídio/psicologia , Adolescente , Adulto , Autopsia , Autorradiografia , Estudos de Casos e Controles , Maleato de Dizocilpina/química , Regulação para Baixo , Antagonistas de Aminoácidos Excitatórios/química , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Ensaio Radioligante
4.
Int J Neuropsychopharmacol ; 22(5): 349-357, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30911751

RESUMO

BACKGROUND: Suicide and major depression are prevalent in individuals reporting early-life adversity. Prefrontal cortex volume is reduced by stress acutely and progressively, and changes in neuron and glia density are reported in depressed suicide decedents. We previously found reduced neurotrophic factor brain-derived neurotrophic factor in suicide decedents and with early-life adversity, and we sought to determine whether cortex thickness or neuron or glia density in the dorsolateral prefrontal and anterior cingulate cortex are associated with early-life adversity or suicide. METHODS: A total of 52 brains, constituting 13 quadruplets of nonpsychiatric controls and major depressive disorder suicide decedents with and without early-life adversity, were matched for age, sex, race, and postmortem interval. Brains were collected at autopsy and frozen, and dorsolateral prefrontal cortex and anterior cingulate cortex were later dissected, postfixed, and sectioned. Sections were immunostained for neuron-specific nuclear protein (NeuN) to label neurons and counterstained with thionin to stain glial cell nuclei. Cortex thickness, neuron and glial density, and neuron volume were measured by stereology. RESULTS: Cortical thickness was 6% less with early-life adversity in dorsolateral prefrontal cortex and 12% less in anterior cingulate cortex (P < .05), but not in depressed suicide decedents in either region. Neuron density was not different in early-life adversity or with suicide, but glial density was 17% greater with early-life adversity in dorsolateral prefrontal cortex and 15% greater in anterior cingulate cortex, but not in suicides. Neuron volume was not different with early-life adversity or suicide. CONCLUSIONS: Reported early-life adversity, but not the stress associated with suicide, is associated with thinner prefrontal cortex and greater glia density in adulthood. Early-life adversity may alter normal neurodevelopment and contribute to suicide risk.


Assuntos
Adultos Sobreviventes de Eventos Adversos na Infância , Substância Cinzenta/patologia , Córtex Pré-Frontal/patologia , Estresse Psicológico/patologia , Suicídio , Adulto , Transtorno Depressivo/patologia , Feminino , Giro do Cíngulo/patologia , Humanos , Masculino , Neuroglia/patologia , Neurônios/patologia , Tamanho do Órgão
5.
J Psychiatry Neurosci ; 44(5): 294-302, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120232

RESUMO

Background: Serotonergic system abnormalities are implicated in many psychiatric disorders, including major depression. The temporal lobe receives a high density of serotonergic afferent projections, and responses in the primary auditory cortex to sound are modulated by serotonergic tone. However, the associations between changes in serotonergic tone, disease state and changes in auditory cortical function remain to be clarified. Methods: We quantified serotonin 1A (5-HT1A) receptor binding, serotonin 2A (5-HT2A) receptor binding, and serotonin transporter (SERT) binding in Brodmann areas (BA) 41/42, 22, 9 and 4 from postmortem brain sections of 40 psychiatrically healthy controls and 39 individuals who had a history of a major depressive episode (MDE). Results: There was 33% lower 5-HT2A receptor binding in BA 41/42 in individuals who had an MDE than in controls (p = 0.0069). Neither 5-HT1A nor SERT binding in BA 41/42 differed between individuals who had an MDE and controls. We also found 14% higher 5-HT1A receptor binding (p = 0.045) and 21% lower SERT binding in BA 9 of individuals who had an MDE (p = 0.045). Limitations: The study was limited by the small number of postmortem brain samples including BA 41/42 available for binding assays and the large overlap between suicide and depression in the MDE sample. Conclusion: Depression may be associated with altered serotonergic function in the auditory cortex involving the 5-HT2A receptor and is part of a wider view of the pathophysiology of mood disorders extending beyond psychopathology.


Assuntos
Córtex Auditivo/metabolismo , Transtorno Depressivo Maior/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Idoso , Autopsia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Suicídio
6.
Int J Neuropsychopharmacol ; 21(6): 528-538, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432620

RESUMO

Background: Brain-derived neurotrophic factor is implicated in the pathophysiology of major depressive disorder and suicide. Both are partly caused by early life adversity, which reduces brain-derived neurotrophic factor protein levels. This study examines the association of brain-derived neurotrophic factor Val66Met polymorphism and brain brain-derived neurotrophic factor levels with depression and suicide. We hypothesized that both major depressive disorder and early life adversity would be associated with the Met allele and lower brain brain-derived neurotrophic factor levels. Such an association would be consistent with low brain-derived neurotrophic factor mediating the effect of early life adversity on adulthood suicide and major depressive disorder. Methods: Brain-derived neurotrophic factor Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 nonsuicides. Additionally, brain-derived neurotrophic factor protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9), anterior cingulate cortex (Brodmann area 24), caudal brainstem, and rostral brainstem. The relationships between these measures and major depressive disorder, death by suicide, and reported early life adversity were examined. Results: Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower brain-derived neurotrophic factor levels in anterior cingulate cortex and caudal brainstem compared with nondepressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower brain-derived neurotrophic factor levels in the anterior cingulate cortex were found in subjects who had been exposed to early life adversity and/or died by suicide compared with nonsuicide decedents and no reported early life adversity. Conclusions: This study provides further evidence implicating low brain brain-derived neurotrophic factor and the brain-derived neurotrophic factor Met allele in major depression risk. Future studies should seek to determine how altered brain-derived neurotrophic factor expression contributes to depression and suicide.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Suicídio , Adulto , Adultos Sobreviventes de Eventos Adversos na Infância , Alelos , Encéfalo/patologia , Transtorno Depressivo Maior/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
7.
Depress Anxiety ; 33(6): 531-540, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27030168

RESUMO

INTRODUCTION: We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). MATERIALS AND METHODS: Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). RESULTS: We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). CONCLUSION: We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior.


Assuntos
Proteínas Cromossômicas não Histona/genética , Transtorno Depressivo Maior/genética , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/genética , Suicídio , Proteínas de Ligação a Tacrolimo/genética , Adulto , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
8.
Am J Med Genet B Neuropsychiatr Genet ; 171B(3): 414-426, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26892569

RESUMO

Gamma-amino butyric acid (GABA) and glutamate are the major inhibitory and excitatory neurotransmitters in the mammalian central nervous system, respectively, and have been associated with suicidal behavior and major depressive disorder (MDD). We examined the relationship between genotype, brain transcriptome, and MDD/suicide for 24 genes involved in GABAergic and glutamatergic signaling. In part 1 of the study, 119 candidate SNPs in 24 genes (4 transporters, 4 enzymes, and 16 receptors) were tested for associations with MDD and suicidal behavior in 276 live participants (86 nonfatal suicide attempters with MDD and 190 non-attempters of whom 70% had MDD) and 209 postmortem cases (121 suicide deaths of whom 62% had MDD and 88 sudden death from other causes of whom 11% had MDD) using logistic regression adjusting for sex and age. In part 2, RNA-seq was used to assay isoform-level expression in dorsolateral prefrontal cortex of 59 postmortem samples (21 with MDD and suicide, 9 MDD without suicide, and 29 sudden death non-suicides and no psychiatric illness) using robust regression adjusting for sex, age, and RIN score. In part 3, SNPs with subthreshold (uncorrected) significance levels below 0.05 for an association with suicidal behavior and/or MDD in part 1 were tested for eQTL effects in prefrontal cortex using the Brain eQTL Almanac (www.braineac.org). No SNPs or transcripts were significant after adjustment for multiple comparisons. However, a protein coding transcript (ENST00000414552) of the GABA A receptor, gamma 2 (GABRG2) had lower brain expression postmortem in suicide (P = 0.01) and evidence for association with suicide death (P = 0.03) in a SNP that may be an eQTL in prefrontal cortex (rs424740, P = 0.02). These preliminary results implicate GABRG2 in suicide and warrant further investigation and replication in larger samples.


Assuntos
Transtorno Depressivo Maior/genética , Genômica/métodos , Ácido Glutâmico/metabolismo , Neurotransmissores/metabolismo , Ideação Suicida , Ácido gama-Aminobutírico/metabolismo , Adulto , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Mudanças Depois da Morte
9.
Neurobiol Dis ; 79: 123-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25959060

RESUMO

Low brain expression of the spermidine/spermine N-1 acetyltransferase (SAT1) gene, the rate-limiting enzyme involved in catabolism of polyamines that mediate the polyamine stress response (PSR), has been reported in depressed suicides. However, it is unknown whether this effect is associated with depression or with suicide and whether all or only specific isoforms expressed by SAT1, such as the primary 171 amino acid protein-encoding transcript (SSAT), or an alternative splice variant (SSATX) that is involved in SAT1 regulated unproductive splicing and transcription (RUST), are involved. We applied next generation sequencing (RNA-seq) to assess gene-level, isoform-level, and exon-level SAT1 expression differences between healthy controls (HC, N = 29), DSM-IV major depressive disorder suicides (MDD-S, N = 21) and MDD non-suicides (MDD, N = 9) in the dorsal lateral prefrontal cortex (Brodmann Area 9, BA9) of medication-free individuals postmortem. Using small RNA-seq, we also examined miRNA species putatively involved in SAT1 post-transcriptional regulation. A DSM-IV diagnosis was made by structured interview. Toxicology and history ruled out recent psychotropic medication. At the gene-level, we found low SAT1 expression in both MDD-S (vs. HC, p = 0.002) and MDD (vs. HC, p = 0.002). At the isoform-level, reductions in MDD-S (vs. HC) were most pronounced in four transcripts including SSAT and SSATX, while reductions in MDD (vs. HC) were pronounced in three transcripts, one of which was reduced in MDD relative to MDD-S (all p < 0.1 FDR corrected). We did not observe evidence for differential exon-usage (i.e. splicing) nor differences in miRNA expression. Results replicate the finding of low SAT1 brain expression in depressed suicides in an independent sample and implicate low SAT1 brain expression in MDD independent of suicide. Low expressions of both SSAT and SATX isoforms suggest that shared transcriptional mechanisms involved in RUST may account for low SAT1 brain expression in depressed suicides. Future studies are required to understand the functions and regulation of SAT1 isoforms, and how they relate to the pathogenesis of MDD and suicide.


Assuntos
Acetiltransferases/metabolismo , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Suicídio , Acetiltransferases/genética , Adulto , Processamento Alternativo , Transtorno Depressivo Maior/genética , Éxons , Feminino , Perfilação da Expressão Gênica , Humanos , Modelos Lineares , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transcriptoma
10.
Bioorg Med Chem Lett ; 25(18): 3933-6, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26253634

RESUMO

Radiosynthesis and in vitro evaluation of [(18)F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([(18)F]FECIMBI-36) or ([(18)F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [(3)H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1nM) and 5-HT2CR (Ki=1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [(18)F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [(18)F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity > 95% and specific activity 1-2Ci/µmol (N = 6). In vitro autoradiography studies demonstrate that [(18)F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [(18)F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging.


Assuntos
Etilaminas/farmacologia , Radioisótopos de Flúor/farmacologia , Tomografia por Emissão de Pósitrons , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Relação Dose-Resposta a Droga , Etilaminas/síntese química , Etilaminas/química , Radioisótopos de Flúor/química , Humanos , Ligantes , Estrutura Molecular , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Relação Estrutura-Atividade
11.
Int J Neuropsychopharmacol ; 17(12): 1923-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24969726

RESUMO

Modest antidepressant response rates of mood disorders (MD) encourage benzodiazepine (BZD) co-medication with debatable benefit. Adult hippocampal neurogenesis may underlie antidepressant responses, but diazepam co-administration impairs murine neuron maturation and survival in response to fluoxetine. We counted neural progenitor cells (NPCs), mitotic cells, and mature granule neurons post-mortem in dentate gyrus (DG) from subjects with: untreated Diagnostic and Statistical Manual of Mental Disorders (DSM) IV MD (n = 17); antidepressant-treated MD (MD*ADT, n = 10); benzodiazepine-antidepressant-treated MD (MD*ADT*BZD, n = 7); no psychopathology or treatment (controls, n = 18). MD*ADT*BZD had fewer granule neurons vs. MD*ADT in anterior DG and vs. controls in mid DG, and did not differ from untreated-MD in any DG subregion. MD*ADT had more granule neurons than untreated-MD in anterior and mid DG and comparable granule neuron number to controls in all dentate subregions. Untreated-MD had fewer granule neurons than controls in anterior and mid DG, and did not differ from any other group in posterior DG. MD*ADT*BZD had fewer NPCs vs. MD*ADT in mid DG. MD*ADT had more NPCs vs. untreated-MD and controls in anterior and mid DG. MD*ADT*BZD and MD*ADT had more mitotic cells in anterior DG vs. controls and untreated-MD. There were no between-group differences in mid DG in mitotic cells or in posterior DG for any cell type. Our results in mid-dentate, and to some degree anterior dentate, gyrus are consistent with murine findings that benzodiazepines counteract antidepressant-induced increases in neurogenesis by interfering with progenitor proliferation. We also confirmed, in this expanded sample, our previous finding of granule neuron deficit in untreated MD.


Assuntos
Antidepressivos/uso terapêutico , Benzodiazepinas/uso terapêutico , Giro Denteado/efeitos dos fármacos , Fluoxetina/uso terapêutico , Transtornos do Humor/tratamento farmacológico , Adulto , Giro Denteado/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mitose/efeitos dos fármacos , Transtornos do Humor/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia
12.
Synapse ; 68(3): 127-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23813499

RESUMO

Using high pressure liquid chromatography, we find more brainstem 5-HT and 5-HIAA in suicides compared with nonpsychiatric, sudden death controls throughout the rostrocaudal extent of the brainstem DRN and MRN. This suggests that 5-HT synthesis in suicides is greater within all DRN subnuclei and the MRN compared with controls.


Assuntos
Tronco Encefálico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Suicídio , Adolescente , Adulto , Idoso , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
13.
Alcohol Clin Exp Res ; 38(7): 1894-901, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24942188

RESUMO

BACKGROUND: Chronic alcohol use depletes brain serotonin (5-hydroxytryptamine [5-HT]), yet we previously found more tryptophan hydroxylase 2 (TPH2), the rate-limiting biosynthetic enzyme for 5-HT, in the dorsal raphe nucleus (DRN) of alcoholics. We sought to determine whether the increase in amount of TPH2 enzyme is associated with more TPH2 mRNA gene expression in the DRN of a new cohort of alcoholics and controls. METHODS: TPH2 mRNA and protein were measured by in situ hybridization and immunoautoradiography, respectively, in the DRN and median raphe nucleus (MRN) of age- and sex-matched pairs (n = 16) of alcoholics and nonpsychiatric controls. Alcohol use disorder diagnosis and medical, psychiatric, and family histories were obtained by psychological autopsy. Age and sex were covariates in the analyses. RESULTS: TPH2 mRNA in alcoholics was greater in the DRN and MRN compared to controls (DRN: controls: 3.6 ± 1.6, alcoholics: 4.8 ± 1.8 nCi/mg of tissue, F = 4.106, p = 0.02; MRN: controls: 2.6 ± 1.2, alcoholics: 3.5 ± 1.1 nCi/mg of tissue, F = 3.96, p = 0.024). The difference in TPH2 mRNA was present in all DRN subnuclei (dorsal [DRd]: 135%, interfascicular [DRif]: 139%, ventral [DRv]: 135%, ventrolateral [DRvl]: 136% of control p < 0.05) except the caudal subnucleus. Alcoholics also had more TPH2 protein in the DRN and MRN than controls (DRN: controls: 265 ± 47, alcoholics: 318 ± 47 µCi/g, F = 8.72, p = 0.001; MRN: controls: 250 ± 33, alcoholics: 345 ± 39 µCi/g, F = 7.78, p = 0.001). There is a positive correlation between TPH2 protein and mRNA expression in the DRN (r = 0.815, p < 0.001), suggesting that the higher amount of TPH2 protein is due to an increase in TPH2 gene expression. CONCLUSIONS: These findings suggest that greater TPH2 gene expression is the basis for more TPH2 protein in the DRN and MRN in alcoholics.


Assuntos
Alcoolismo/enzimologia , Alcoolismo/genética , Regulação Enzimológica da Expressão Gênica/genética , Núcleos da Rafe do Mesencéfalo/enzimologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Adulto , Alcoólicos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Triptofano Hidroxilase/biossíntese , Adulto Jovem
14.
Bioorg Med Chem Lett ; 23(14): 4191-4, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23743281

RESUMO

Radiosynthesis and in vitro evaluation of [(18)F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([(18)F]BMS-754807 or [(18)F]1) a specific IGF-1R inhibitor was performed. [(18)F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [(18)F]TBAF in DMSO at 170°C at high radiochemical purity and specific activity (1-2Ci/µmol, N=10). The proof of concept of IGF-IR imaging with [(18)F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [(18)F]1 can be a potential PET tracer for monitoring IGF-1R.


Assuntos
Pirazóis/química , Compostos Radiofarmacêuticos/síntese química , Receptor IGF Tipo 1/antagonistas & inibidores , Triazinas/química , Radioisótopos de Flúor/química , Humanos , Ligantes , Gradação de Tumores , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Ligação Proteica , Pirazóis/síntese química , Radiografia , Compostos Radiofarmacêuticos/metabolismo , Receptor IGF Tipo 1/metabolismo , Triazinas/síntese química
15.
Int J Neuropsychopharmacol ; 15(4): 435-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21733245

RESUMO

Although serotonin receptor and cytoarchitectonic alterations are reported in prefrontal cortex (PFC) in suicide and depression, no study has considered binding relative to neuron density. Therefore, we measured neuron density and serotonin transporter (SERT), 5-HT1A and 5-HT2A binding in matched suicides and controls. Suicides and normal controls (n=15 matched pairs) were psychiatrically characterized. Neuron density and binding were determined in dorsal [Brodmann area (BA) 9] and ventral (BA 47) PFC by stereology and quantitative autoradiography in near-adjacent sections. Binding index was defined as the ratio of receptor binding to neuron density. Suicides had lower neuron density in the gyrus of both areas. The binding index was lower for SERT in BA 47 but not in BA9; the 5-HT1A binding index was higher in BA 9 but not in BA 47, while the 5-HT2A binding index was not different between groups. SERT binding was lower in suicides in BA 47 but not BA 9, while 5-HT1A binding was higher in BA 9 but not BA 47. SERT binding negatively correlated with 5-HT1A binding in BA 47 in suicides. Neuron density decreased with age. The 5-HT1A binding index was higher in females than males. We found lower neuron density and lower SERT binding index in both PFC regions in suicides. More 5-HT1A binding with less SERT binding and the negative correlation in depressed suicides suggests post-synaptic receptor up-regulation, and it is independent of the difference in neuron density. Thus, abnormalities in both cortical neurons and in their serotonergic innervation are present in suicides and future studies will need to determine whether cortical changes reflect the trophic effect of altered serotonin innervation.


Assuntos
Transtorno Depressivo Maior/patologia , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Receptores de Serotonina/metabolismo , Suicídio , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacocinética , Adolescente , Adulto , Idoso , Autorradiografia , Estudos de Casos e Controles , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Imipramina/análogos & derivados , Imipramina/farmacocinética , Ketanserina/farmacocinética , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Córtex Pré-Frontal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Serotoninérgicos/farmacocinética , Trítio/farmacocinética , Regulação para Cima , Adulto Jovem
16.
Bioorg Med Chem Lett ; 22(15): 5104-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22749281

RESUMO

Synthesis and in vitro evaluation of [(18)F](R)-N-(4-bromo-2-fluorophenyl)-7-((1-(2-fluoroethyl)piperidin-3-yl)methoxy)-6-methoxyquinazolin-4-amine ((R)-[(18)F]FEPAQ or [(18)F]1), a potential imaging agent for the VEGFR2, using phosphor image autoradiography are described. Synthesis of 2, the desfluoroethyl precursor for (R)-FEPAQ was achieved from t-butyl 3-(hydroxymethyl)piperidine-1-carboxylate (3) in five steps and in 50% yield. [(18)F]1 was synthesized by reaction of sodium salt of compound 2 with [(18)F]fluoroethyl tosylate in DMSO. The yield of [(18)F]1 was 20% (EOS based on [(18)F]F(-)) with >99% radiochemical purity and specific activity of 1-2 Ci/µmol (n=10). The total synthesis time was 75 min. The radiotracer selectively labeled VEGFR2 in slide-mounted sections of human brain and higher binding was found in surgically removed human glioblastoma sections as demonstrated by in vitro phosphor imager studies. These findings suggest [(18)F]1 may be a promising radiotracer for imaging VEGFR2 in brain using PET.


Assuntos
Ligantes , Quinazolinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Radioisótopos de Flúor/química , Glioma/diagnóstico , Glioma/metabolismo , Glioma/patologia , Humanos , Tomografia por Emissão de Pósitrons , Quinazolinas/química , Compostos Radiofarmacêuticos/química , Estereoisomerismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Nat Neurosci ; 25(4): 493-503, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383330

RESUMO

The hippocampus is the most common seizure focus in people. In the hippocampus, aberrant neurogenesis plays a critical role in the initiation and progression of epilepsy in rodent models, but it is unknown whether this also holds true in humans. To address this question, we used immunofluorescence on control healthy hippocampus and surgical resections from mesial temporal lobe epilepsy (MTLE), plus neural stem-cell cultures and multi-electrode recordings of ex vivo hippocampal slices. We found that a longer duration of epilepsy is associated with a sharp decline in neuronal production and persistent numbers in astrogenesis. Further, immature neurons in MTLE are mostly inactive, and are not observed in cases with local epileptiform-like activity. However, immature astroglia are present in every MTLE case and their location and activity are dependent on epileptiform-like activity. Immature astroglia, rather than newborn neurons, therefore represent a potential target to continually modulate adult human neuronal hyperactivity.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Neurogênese , Convulsões
18.
J Neurochem ; 118(6): 1067-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21740442

RESUMO

BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both.


Assuntos
Neurônios/enzimologia , Triptofano Hidroxilase/biossíntese , Animais , Autorradiografia , Química Encefálica , Contagem de Células , Densitometria , Ácido Hidroxi-Indolacético/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Especificidade da Espécie , Triptofano Hidroxilase/genética
19.
Synapse ; 65(8): 715-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21108237

RESUMO

[³H]CUMI-101 is a 5-HT(1A) partial agonist, which has been evaluated for use as a positron emission tracer in baboon and humans. We sought to evaluate the properties of [³H]CUMI-101 ex vivo in awake rats and determine if [³H]CUMI-101 can measure changes in synaptic levels of serotonin after different challenge paradigms. [³H]CUMI-101 shows good uptake and good specific binding ratio (SBR) in frontal cortex 5.18 and in hippocampus 3.18. Binding was inhibited in a one-binding-site fashion by WAY100635 and unlabeled CUMI-101. The ex vivo B(max) of [³H]CUMI-101 in frontal cortex (98.7 fmol/mg) and hippocampus (131 fmol/kg) agree with the ex vivo B(max) of [³H]MPPF in frontal cortex (147.1 fmol/mg) and hippocampus (72.1 fmol/mg) and with in vitro values reported with 8-OH-DPAT. Challenges with citalopram, a selective serotonin reuptake inhibitor, fenfluramine, a serotonin releaser, and 4-chloro-DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however, the results from pharmacological challenges remain inconclusive.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Animais , Encéfalo/efeitos dos fármacos , Estado de Consciência , Masculino , Cintilografia , Ratos , Ratos Sprague-Dawley , Trítio/farmacocinética
20.
Res Sq ; 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34729556

RESUMO

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness 1-4 . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-2 5 , and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA