Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 69(3): 483-90, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15784975

RESUMO

Lipid peroxidation of human heptoma cell line, HepG2, after incorporation of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was measured with a fluorescent probe and gas chromatography-mass spectrometry (GC-MS) analysis. The analysis with a fluorescent probe showed that incorporation of each polyunsaturated fatty acid (PUFA) enhanced the cellular lipid peroxidation level, but there was little difference in the effect of LA, AA, or DHA on the enhancement of cellular lipid peroxidation. The fluorescent analysis also showed that the addition of H(2)O(2) (0.5 mM) enhanced the cellular lipid peroxidation levels in LA and AA supplemented cells as compared with those without H(2)O(2). However, the enhancement of lipid peroxidation by H(2)O(2) was not observed in DHA-supplemented cells. The same result was obtained in the GC-MS analysis of total amounts of monohydroperoxides (MHP) formed in the cellular phospholipid oxidation. In this case, the main source for MHP was LA in LA-, AA-, and DHA-supplemented cells. A significant amount of AA-MHP and a small amount of DHA-MHP were observed in AA- and DHA-supplemented cells respectively. GC-MS analysis also indicated the specific positional distribution of DHA-MHP isomers. The isomers were formed only by hydrogen abstraction at the C-18 (16-MHP + 20-MHP; 46.5%), C-6 (4-MHP + 8-MHP; 38.5%), and C-12 (10-MHP + 14-MHP; 15.1%) positions, but not at the C-9 or C-15 positions.


Assuntos
Ácido Araquidônico/metabolismo , Carcinoma Hepatocelular/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Linoleico/metabolismo , Peroxidação de Lipídeos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Corantes Fluorescentes , Cromatografia Gasosa-Espectrometria de Massas , Humanos
2.
Biosci Biotechnol Biochem ; 66(12): 2573-7, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12596850

RESUMO

Synthesized PCs containing docosahexaenoic acid (DHA), arachidonic acid (AA), linoleic acid (LA), and palmitic acid (PA) at known positions in the glycerol moiety were oxidized in liposomes, bulk, and organic solvent. In bulk and organic solvent, the oxidative stability of PC decreased with increasing degrees of unsaturation. However, the degree of unsaturation had little effect on the stability of PC in liposomes. The oxidative stability of PC in liposomes would be affected by the chemical reactivity based on the degree of unsaturation and by the conformation of fatty acyl component in PC bilayers. When the oxidative stability of 1-PA-2-LA-PC or 1-PA-2-AA-PC was compared with that of a 1:1 (mol ratio) mixture of 1,2-diPA-PC + 1,2-diLA-PC, or 1,2-diPA-PC + 1,2-diAA-PC, respectively, the former PC was more oxidatively stable than that of the latter PC mixture in all oxidation systems, although the degree of unsaturation of 1-PA-2-PUFA-PC was the same as that of the corresponding mixture of diPA-PC + diPUFA-PC. The higher oxidative stability of 1-PA-2-PUFA-PC than that of a corresponding mixture of diPA-PC + diPUFA-PC in liposomes was suggested to be due to the different conformation of PC bilayers and the different rate of hydrogen abstraction by free radicals from intermolecular and intramolecular acyl groups.


Assuntos
Ácidos Graxos Insaturados/química , Lipossomos/química , Fosfatidilcolinas/química , Ácido Araquidônico/química , Ácidos Docosa-Hexaenoicos/química , Oxirredução , Ácido alfa-Linolênico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA