RESUMO
A new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later.
RESUMO
The creation of sustainable composites reinforced with natural fibers has recently drawn the interest of both industrial and academics. Basalt fiber (BF) stands out as the most intriguing among the natural fibers that may be utilized as reinforcement due to their characteristics. Numerous academics have conducted many tests on the strength, durability, temperature, and microstructure characteristics of concrete reinforced with BF and have found promising results. However, because the information is dispersed, readers find it problematic to assess the advantages of BF reinforced concrete, which limits its applications. Therefore, a condensed study that provides the reader with an easy route and summarizes all pertinent information is needed. The purpose of this paper (Part II) is to undertake a compressive assessment of basalt fiber reinforced concrete's durability features. The results show that adding BF significantly increased concrete durability. The review also identifies a research deficiency that must be addressed before BF is used in practice.
RESUMO
The need for low-cost raw materials is driven by the fact that iron ore tailings, a prevalent kind of hazardous solid waste, have created major environmental issues. Although many studies have focused on using iron ore tailing (IOT) in concrete and have reported positive results, readers may find it difficult to accurately assess the behaviors of IOT in concrete due to the scattered nature of the information. Therefore, a comprehensive assessment of IOT in concrete is necessary. This paper thoroughly reviews the characteristics of concrete that contains IOT such as fresh properties, mechanical properties and durability at different age of curing. The outcome of this review indicates that by using IOT, concrete's mechanical properties and durability improved, but its flowability decreased. Compressive strength of concrete with 20% substitution of IOT is 14% more than reference concrete. Furthermore, up to 40% substitution of IOT produces concrete that has sufficient flowability and compactability. Scan electronic microscopy results indicate a weak interfacial transition zone (ITZ). The optimum IOT dosage is important since a greater dose may decrease the strength properties and durability owing to a lack of fluidity. Depending on the physical and chemical composition of IOT, the average value of optimum percentages ranges from 30 to 40%. The assessment also recommends areas of unsolved research for future investigations.
RESUMO
The partial replacement of cement in concrete with other building materials has come to light because of research on industrial waste and sustainable building practices. Concrete is made more affordable by using such components, and it also helps to ease disposal worries. Ash made by burning wood and other wood products is one example of such a substance. Many researchers focused on the utilization of wooden ash (WA) as a construction material. However, information is scattered, and no one can easily judge the impact of WA on concrete properties which restrict its use. Therefore, a details review is required which collect the past and current progress on WA as a construction material. relevant information. This review aims to collect all the relevant information including the general back of WA, physical and chemical aspects of WA, the impact of WA on concrete fresh properties, strength properties, and durability aspects in addition to microstructure analysis. The results indicate the WA decreased the slump and increased the setting time. Strength and durability properties improved with the substitution of WA due to pozzolanic reaction and micro-filling effects. However, the optimum dose is important. Different research recommends different optimum doses depending on source mix design etc. However, the majority of researcher suggests a 10% optimum substitution of WA. The review also concludes that, although WA has the potential to be used as a concrete ingredient but less researchers focused on WA as compared to other waste materials such as fly ash and silica fume etc.
RESUMO
The low tensile capacity of concrete often results in brittle failure without any warning. One way to cope with this issue is to add fibers and essentially improve the tensile strength (TS) behavior of concrete and offset its undesirable brittle failure. In recent investigations, basalt fibers (BFs), as compared to a variety of other kinds of fiber, have attracted the attention of researchers. In that respect, BFs exhibit several benefits, such as excellent elastic properties, great strength, high elastic modulus, higher thermal stability, and decent chemical stability. Although many researchers have reported that BFs can be embedded in concrete to improve the tensile capacity, a more profound understanding of its contribution is still needed. However, the information is scattered and it is difficult for the reader to identify the benefits of BFs. Therefore, a detailed assessment is essential to summarize all relevant information and provide an easy path for the reader. This review (part â ) summarizes all the relevant information, including flow properties, strength properties, and failure modes. Results reveal that BFs can greatly enhance the strength properties and change the brittle nature of concrete to one of ductility. However, it unfavorably impacts the flowability of concrete. Furthermore, the optimal proportion is shown to be important as a higher dose can adversely affect the strength of concrete, due to a deficiency of flowability. The typical range of the ideal incorporation of BFs varies from 0.5 to 1.5%. Finally, the review also indicates the research gap for future research studies that must be cautiously explored before being used in the real world.