Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(4): 1117-1126, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31956990

RESUMO

In this study, we assessed the importance of cytoskeleton organization in the mammalian cells used to produce therapeutic proteins. Two cytoskeletal genes, Actin alpha cardiac muscle 1 (ACTC1) and a guanosine triphosphate GTPase-activating protein (TAGAP), were found to be upregulated in highly productive therapeutic protein-expressing Chinese hamster ovary (CHO) cells selected by the deprivation of vitamin B5. We report here that the overexpression of the ACTC1 protein was able to improve significantly recombinant therapeutic production, as well as to decrease the levels of toxic lactate metabolic by-products. ACTC1 overexpression was accompanied by altered as well as decreased polymerized actin, which was associated with high protein production by CHO cell cultured in suspension. We suggest that the depolymerization of actin and the possible modulation of integrin signaling, as well as changes in basal metabolism, may be driving the increase of protein secretion by CHO cells.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas Recombinantes , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Biotechnol Bioeng ; 117(2): 466-485, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631325

RESUMO

The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type-C endogenous retrovirus (ERV) sequences in their genome and to release retroviral-like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type-C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type-C ERV sequences clustering into three functionally conserved groups. Transcripts from one type-C ERV group were full-length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral-like particles, suggesting that this ERV group may produce functional viruses. CRISPR-Cas9 genome editing was used to disrupt the gag gene of the expressed type-C ERV group. Comparison of CRISPR-derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA-loaded viral particles. Clones bearing a Gag loss-of-function mutation in this ERV showed a reduction of RNA-containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.


Assuntos
Células CHO/virologia , Retrovirus Endógenos , Mutagênese Sítio-Dirigida/métodos , RNA Viral , Vírion/genética , Animais , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Edição de Genes , Genoma Viral/genética , Mutação com Perda de Função/genética , RNA Viral/genética , RNA Viral/metabolismo
3.
Mech Dev ; 138 Pt 2: 133-140, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26277563

RESUMO

Homeotic genes are aligned on the chromosome in the order of the segments that they specify along the antero-posterior axis of the fly. In general the genes affecting the more posterior segments repress the more anterior genes, a phenomenon known as "posterior dominance". There is however a noticeable exception to this rule in the central nervous system of Drosophila melanogaster where the posterior Abd-B gene does not repress the immediately more anterior abd-A gene. Instead, abd-A repression is accomplished by a 92 kb-long ncRNA (the iab-8ncRNA) that is transcribed from the large inter-genic region between abd-A and Abd-B. This iab-8ncRNA encodes a microRNA to repress abd-A and also a second redundant repression mechanism acting in cis and thought to be transcriptional interference with the abd-A promoter. Using in situ hybridization, a previous work suggested that the iab8ncRNA transcript forms discrete foci restricted to the nuclear periphery and that this localization may be important for its function. In order to better characterize the intra-cellular localization of the iab-8ncRNA we used the MS2-MCP system, which allows fluorescent labeling of RNA in cells and relies on the interaction between GFP-tagged MS2 coat protein (MCP-GFP) and MS2 RNA stem loops. Our results indicate that the large foci seen in previous studies correspond to the site of iab8ncRNA transcription and that the foci seen may simply be an indication of the level of transcription at the locus. We find no evidence to suggest that this localization is important for its function on abd-A repression. We discuss the idea that the iab-8ncRNA may be a relic of a more general ancient mechanism of posterior dominance during the emergence of the hox clusters that was mediated by transcriptional interference.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Genes de Insetos/genética , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
4.
Curr Opin Cell Biol ; 23(3): 346-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21242077

RESUMO

Nuclear pore complexes play a central role in controlling the traffic between the nucleus and the cytoplasm. Progress during the last decade has highlighted nuclear periphery components as novel players in chromatin organization, gene regulation, and genome stability. For instance, lamins associate with repressive chromatin while nuclear pores tend to associate with active chromatin. Interestingly, nucleoporins (Nups) act not only at the nuclear periphery but also in the nucleoplasm. Here we provide an overview of the latest findings and discuss the functional importance of nucleoporin association with specific genes, their role in transcriptional memory, the coupling of transcription and mRNA export, and genome integrity.


Assuntos
Núcleo Celular/genética , Regulação da Expressão Gênica , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , Instabilidade Genômica , Humanos , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
5.
Mol Cell ; 21(3): 379-91, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16455493

RESUMO

Our previous work identified the inner basket of the NPC as a physical activation/protection station for force-tethered, epigenetically silenced genes. Here we show that a specific nucleopore-to-gene-promoter interaction (Nup-PI) is an early physiological event of gene activation. Nup-PI was discovered with chromatin endogenous cleavage (ChEC) experiments that mapped in vivo the genomic interaction sites of the nucleoporin Nup2p fused to microccocal nuclease (Nup2-MN). Strong Nup-PI, cleavage by Nup2-MN, is observed at the promoters of the GAL genes and at HXK1 upon activation of these genes with galactose. Nup-PI at the GAL locus requires Gal4p and the UASg and TATA box elements but not SAGA and active transcription. The physical, activation-dependent interaction of the GAL locus with the NPC basket was confirmed by imaging. Chromosome-wide ChEC studies indicated that Nup-PI occurs at numerous genes. The data identify the NPC basket as a new, integral participant in gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Cromossomos Fúngicos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Ativação Transcricional
6.
Cell ; 109(5): 551-62, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12062099

RESUMO

Chromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA. Genetic studies, immunolocalization, live imaging, and chromatin immunoprecipitation experiments show that these transport proteins block spreading of heterochromatin by physical tethering of the HML locus to the Nup2p receptor of the nuclear pore complex. Genetic deletion of NUP2 abolishes the BA of all transport proteins, while direct targeting of Nup2p to the bracketing DNA elements restores activity. The data demonstrate that physical tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Transporte/genética , Cromatina/genética , Genes/genética , Poro Nuclear/genética , Proteínas Nucleares , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter/genética , Testes Genéticos , Biblioteca Genômica , Região de Controle de Locus Gênico/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA