Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109791

RESUMO

Glycans found on receptor tyrosine kinases (RTKs) have emerged as promising targets for cancer chemotherapy, aiming to address issues such as drug resistance. However, to effectively select the target glycans, it is crucial to define the structure and function of candidate glycans in advance. Through mass spectrometric analysis, this study presents a "glycoform atlas" of epidermal growth factor receptor 2 (ErbB2), an RTK targeted for the treatment of ErbB2-positive cancers. Our analysis provides an in-depth and site-specific glycosylation profile, including both asparagine- and serine/threonine-linked glycosylation. Molecular dynamics simulations of N-glycosylated ErbB2 incorporating the identified glycan structures suggested that the N-glycan at N124 on the long flexible loop in the N-terminal region plays a role in stabilizing the ErbB2 structure. Based on the model structures obtained from the simulations, analysis employing an ErbB2 mutant deficient in N-glycosylation at N124 exhibited a significantly shorter intracellular half-life and suppressed autophosphorylation compared to wild-type ErbB2. Moreover, a structural comparison between the N-glycosylated forms of ErbB2 and its structurally homologous receptor, epidermal growth factor receptor (EGFR), demonstrated distinct variations in the distribution and density of N-glycans across these two molecules. These findings provide valuable insights into the structural and functional implications of ErbB2 glycosylation and will contribute to facilitating the establishment of glycan-targeted therapeutic strategies for ErbB2-positive cancers.


Assuntos
Neoplasias , Humanos , Glicosilação , Fosforilação , Polissacarídeos/metabolismo
2.
Cancer Sci ; 113(4): 1292-1304, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35092134

RESUMO

MET, the receptor for the hepatocyte growth factor (HGF), is strongly associated with resistance to tyrosine kinase inhibitors, key drugs that are used in the therapy of non-small cell lung cancer. MET contains 11 potential N-glycosylation sites, but the site-specific roles of these N-glycans have not been elucidated. We report herein that these N-glycans regulate the proteolytic processing of MET and HGF-induced MET signaling, and that this regulation is site specific. Inhibitors of N-glycosylation were found to suppress the processing and trafficking of endogenous MET in H1975 and EBC-1 lung cancer cells and exogenous MET in CHO-K1 cells. We purified the recombinant extracellular domain of human MET and determined the site-specific N-glycan structures and occupancy using mass spectrometry. The results indicated that most sites were fully glycosylated and that the dominant population was the complex type. To examine the effects of the deletion of N-glycans of MET, we prepared endogenous MET knockout Flp-In CHO cells and transfected them with a series of N-glycan-deletion mutants of MET. The results showed that several N-glycans are implicated in the processing of MET. The findings also suggested that the N-glycans of the SEMA domain of MET positively regulate HGF signaling, and the N-glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing, cell surface expression, and signaling were significantly suppressed in the case of the all-N-glycan-deletion mutant. The overall findings suggest that N-glycans of MET affect the status and the function of the receptor in a site-specific manner.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Cricetinae , Cricetulus , Glicosilação , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met
3.
Biochemistry ; 60(21): 1708-1721, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983715

RESUMO

Endoplasmic reticulum (ER) stress has been reported in a variety of diseases. Although ER stress can be detected using specific markers, it is still difficult to quantitatively evaluate the degree of stress and to identify the cause of the stress. The ER is the primary site for folding of secretory or transmembrane proteins as well as the site where glycosylation is initiated. This study therefore postulates that tracing the biosynthetic pathway of asparagine-linked glycans (N-glycans) would be a reporter for reflecting the state of the ER and serve as a quantitative descriptor of ER stress. Glycoblotting-assisted mass spectrometric analysis of the HeLa cell line enabled quantitative determination of the changes in the structures of N-glycans and degraded free oligosaccharides (fOSs) in response to tunicamycin- or thapsigargin-induced ER stress. The integrated analysis of neutral and sialylated N-glycans and fOSs showed the potential to elucidate the cause of ER stress, which cannot be readily done by protein markers alone. Changes in the total amount of glycans, increase in the ratio of high-mannose type N-glycans, increase in fOSs, and changes in the ratio of sialylated N-glycans in response to ER stress were shown to be potential descriptors of ER stress. Additionally, drastic clearance of accumulated N-glycans was observed in thapsigargin-treated cells, which may suggest the observation of ER stress-mediated autophagy or ER-phagy in terms of glycomics. Quantitative analysis of N-glycoforms composed of N-glycans and fOSs provides the dynamic indicators reflecting the ER status and the promising strategies for quantitative evaluation of ER stress.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/patologia , Asparagina/metabolismo , Biomarcadores , Glicosilação , Células HeLa , Humanos , Manose/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Relação Estrutura-Atividade , Tunicamicina/farmacologia
4.
Respir Res ; 20(1): 224, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638993

RESUMO

BACKGROUND: The incidence of infectious disease caused by nontuberculous mycobacteria is increasing worldwide. Pulmonary Mycobacterium avium complex (MAC) disease is difficult to treat with chemotherapy, and its mechanism of infection, infection route, disease onset, and severity remain unknown. Ficolins are oligomeric defense lectins. L-ficolin plays an important role in innate immunity. This study's aim was to identify L-ficolin's role in patients with pulmonary MAC disease. METHODS: Between April 2011 and September 2017, 61 Japanese patients with pulmonary MAC disease were seen at our hospital. A control group, comprising 30 healthy individuals, without respiratory disease were enrolled in our study. The relationship between serum L-ficolin levels and disease severity was assessed, and L-ficolin's antibacterial role was examined. RESULTS: Serum L-ficolin levels were significantly lower in patients with pulmonary MAC disease than in healthy subjects (1.69 ± 1.27 µg/ml vs. 3.96 ± 1.42 µg/ml; p < 0.001). The cut-off value, based on receiver operating characteristic (ROC) analysis results, was 2.48 µg/ml (area under the curve (AUC) 0.90, sensitivity and specificity 83.6 and 86.7%, respectively). Serum L-ficolin levels were significantly lower in the patients with nodular bronchiectatic type disease compared with the patients with fibrocavitary type disease and were lower in the high-resolution computed tomography high-scoring group compared with low-scoring group. An in vitro analysis showed that purified recombinant L-ficolin bound to M. avium and its major cell wall component, lipoarabinomannan, in a concentration-dependent manner. In addition, recombinant L-ficolin suppressed M. avium growth in a concentration-dependent manner. CONCLUSIONS: Insufficient serum L-ficolin is associated with disease progression in pulmonary MAC disease, and the level of serum L-ficolin is a possible biomarker. TRIAL REGISTRATION: This study is registered with UMIN ( UMIN000022392 ).


Assuntos
Lectinas/sangue , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/sangue , Infecção por Mycobacterium avium-intracellulare/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo Mycobacterium avium/isolamento & purificação , Adulto Jovem , Ficolinas
5.
J Immunol ; 198(7): 2898-2905, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228557

RESUMO

Surfactant protein A (SP-A) is a multifunctional host defense collectin that was first identified as a component of pulmonary surfactant. Although SP-A is also expressed in various tissues, including the urinary tract, its innate immune functions in nonpulmonary tissues are poorly understood. In this study, we demonstrated that adherence of uropathogenic Escherichia coli (UPEC) to the bladder was enhanced in SP-A-deficient mice, which suggests that SP-A plays an important role in innate immunity against UPEC. To understand the innate immune functions of SP-A in detail, we performed in vitro experiments. SP-A directly bound to UPEC in a Ca2+-dependent manner, but it did not agglutinate UPEC. Our results suggest that a bouquet-like arrangement seems unsuitable to agglutinate UPEC. Meanwhile, SP-A inhibited growth of UPEC in human urine. Furthermore, the binding of SP-A to UPEC decreased the adherence of bacteria to urothelial cells. These results indicate that direct action of SP-A on UPEC is important in host defense against UPEC. Additionally, adhesion of UPEC to urothelial cells was decreased when the cells were preincubated with SP-A. Adhesion of UPEC to urothelial cells is achieved via interaction between FimH, an adhesin located at bacterial pili, and uroplakin Ia, a glycoprotein expressed on the urothelium. SP-A directly bound to uroplakin Ia and competed with FimH for uroplakin Ia binding. These results lead us to conclude that SP-A plays important roles in host defense against UPEC.


Assuntos
Infecções por Escherichia coli/imunologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Infecções Urinárias/imunologia , Animais , Proliferação de Células , Humanos , Imunidade Inata/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/imunologia
6.
J Biol Chem ; 292(45): 18565-18576, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28972165

RESUMO

We recently reported that the lectin surfactant protein D (SP-D) suppresses epidermal growth factor receptor (EGFR) signaling by interfering with ligand binding to EGFR through an interaction between the carbohydrate-recognition domain (CRD) of SP-D and N-glycans of EGFR. Here, we report that surfactant protein A (SP-A) also suppresses EGF signaling in A549 human lung adenocarcinoma cells and in CHOK1 cells stably expressing human EGFR and that SP-A inhibits the proliferation and motility of the A549 cells. Results with 125I-EGF indicated that SP-A interferes with EGF binding to EGFR, and a ligand blot analysis suggested that SP-A binds EGFR in A549 cells. We also found that SP-A directly binds the recombinant extracellular domain of EGFR (soluble EGFR or sEGFR), and this binding, unlike that of SP-D, was not blocked by EDTA, excess mannose, or peptide:N-glycosidase F treatment. We prepared a collagenase-resistant fragment (CRF) of SP-A, consisting of CRD plus the neck domain of SP-A, and observed that CRF directly binds sEGFR but does not suppress EGF-induced phosphorylation of EGFR in or proliferation of A549 cells. These results indicated that SP-A binds EGFR and down-regulates EGF signaling by inhibiting ligand binding to EGFR as well as SP-D. However, unlike for SP-D, SP-A lectin activity and EGFR N-glycans were not involved in the interaction between SP-A and EGFR. Furthermore, our results suggested that oligomerization of SP-A is necessary to suppress the effects of SP-A on EGF signaling.


Assuntos
Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Transdução de Sinais , Células A549 , Animais , Células CHO , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cricetulus , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteína A Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Respir Res ; 19(1): 34, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29486761

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe form of idiopathic interstitial pneumonias. Although IPF has not been thought to be associated with bacterial communities, recent papers reported the possible role of microbiome composition in IPF. The roles of microbiomes in respiratory functions and as clinical biomarkers for IPF remain unknown. In this study, we aim to identify the relationship between the microbial environment in the lung and clinical findings. METHODS: Thirty-four subjects diagnosed with IPF were included in this analysis. The 16S rDNA was purified from bronchoalveolar lavage fluid obtained at the time of diagnosis and analyzed using next-generation sequencing techniques to characterize the bacterial communities. Furthermore, microbiomes from mice with bleomycin-induced lung fibrosis were analyzed. RESULTS: The most prevalent lung phyla were Firmicutes, Proteobacteria and Bacteroidetes. Decreased microbial diversity was found in patients with low forced vital capacity (FVC) and early mortality. Additionally, the diversity and relative abundance of Firmicutes, Streptococcaceae, and Veillonellaceae were significantly associated with FVC, 6-min walk distance, and serum surfactant protein D. Bleomycin-induced lung fibrosis resulted in decrease of diversity and alteration of microbiota in PCoA analysis. These results support the observations in human specimens. CONCLUSIONS: This study identified relationships between specific taxa in BALF and clinical findings, which were also supported by experiments in a mouse model. Our data suggest the possibility that loss of microbial diversity is associated with disease activities of IPF.


Assuntos
Progressão da Doença , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/microbiologia , Pulmão/fisiopatologia , Microbiota/fisiologia , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos
8.
Biochem Biophys Res Commun ; 485(1): 107-112, 2017 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28188794

RESUMO

Human ß-defensin 3 (hBD3) is known to be involved in mast cell activation. However, molecular mechanisms underlying the regulation of hBD3-induced mast cell activation have been poorly understood. We previously reported that SP-A and SP-A-derived peptide 01 (SAP01) regulate the function of hBD3. In this study, we focused on the effects of SP-A and SAP01 on the activation of mast cells induced by hBD3. SAP01 directly bound to hBD3. Mast cell-mediated vascular permeability and edema in hBD3 administered rat ears were decreased when injected with SP-A or SAP01. Compatible with the results in rat ear model, both SP-A and SAP01 inhibited hBD3-induced chemotaxis of mast cells in vitro. Direct interaction between SP-A or SAP01 and hBD3 seemed to be responsible for the inhibitory effects on chemotaxis. Furthermore, SAP01 attenuated hBD3-induced accumulation of mast cells and eosinophils in tracheas of the OVA-sensitized inflammatory model. SP-A might contribute to the regulation of inflammatory responses mediated by mast cells during infection.


Assuntos
Quimiotaxia/efeitos dos fármacos , Inflamação/imunologia , Mastócitos/imunologia , Proteína A Associada a Surfactante Pulmonar/imunologia , beta-Defensinas/imunologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/tratamento farmacológico , Edema/imunologia , Humanos , Inflamação/tratamento farmacológico , Masculino , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/farmacologia , Ratos Sprague-Dawley
9.
J Biol Chem ; 288(46): 32910-21, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24097984

RESUMO

Heregulin signaling is involved in various tumor proliferations and invasions; thus, receptors of heregulin are targets for the cancer therapy. In this study we examined the suppressing effects of extracellular domains of ErbB2, ErbB3, and ErbB4 (soluble ErbB (sErbB)) on heregulin ß signaling in human breast cancer cell line MCF7. It was found that sErbB3 suppresses ligand-induced activation of ErbB receptors, PI3K/Akt and Ras/Erk pathways most effectively; sErbB2 scarcely suppresses ligand-induced signaling, and sErbB4 suppresses receptor activation at ∼10% efficiency of sErbB3. It was revealed that sErbB3 does not decrease the effective ligands but decreases the effective receptors. By using small interfering RNA (siRNA) for ErbB receptors, we determined that sErbB3 suppresses the heregulin ß signaling by interfering ErbB3-containing heterodimers including ErbB2/ErbB3. By introducing the mutation of N418Q to sErbB3, the signaling-inhibitory effects were increased by 2-3-fold. Moreover, the sErbB3 N418Q mutant enhanced anticancer effects of lapatinib more effectively than the wild type. We also determined the structures of N-glycan on Asn-418. Results suggested that the N-glycan-deleted mutant of sErbB3 suppresses heregulin signaling via ErbB3-containing heterodimers more effectively than the wild type. Thus, we demonstrated that the sErbB3 N418Q mutant is a potent inhibitor for heregulin ß signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Mutação de Sentido Incorreto , Neuregulina-1/metabolismo , Multimerização Proteica , Receptor ErbB-3/metabolismo , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lapatinib , Neuregulina-1/genética , Estrutura Terciária de Proteína , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-4
10.
Biochem Biophys Res Commun ; 454(3): 364-8, 2014 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-25451255

RESUMO

It has been well documented that activation of the ErbB3-PI3K-Akt pathway is implicated in tumor survival and progression. We previously demonstrated that the single N-glycan deletion mutant of soluble ErbB3 protein (sErbB3 N418Q) attenuates heregulin ß1-induced ErbB3 signaling. The active PI3K-Akt pathway augments the nuclear accumulation of hypoxia inducible factor (HIF)-1α, which activates the transcription of many target genes and drives cancer progression. In this study, we focused on the effects of sErbB3 N418Q mutant on nuclear accumulation of HIF-1α. Pretreatment with the sErbB3 N418Q mutant suppressed heregulin ß1-induced HIF-1α activation in MCF7 cells. Similar results were also obtained in other breast cancer cell lines, T47D and BT474. Interestingly, these suppressive effects were not observed with the sErbB3 wild type. In addition, pretreatment with the sErbB3 N418Q mutant suppressed the cell migration of MCF7 cells induced by heregulin ß1. Furthermore, incubation with heregulin ß1 also induced the nuclear accumulation of Nrf2, and this effect was also reduced by the sErbB3 N418Q mutant, but not the sErbB3 wild type. These findings indicated that the sErbB3 N418Q mutant suppressed malignant formation of cancer cells by blocking of the HIF-1α and Nrf2 pathways.


Assuntos
Neoplasias da Mama/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuregulina-1/metabolismo , Mutação Puntual , Receptor ErbB-3/genética , Transdução de Sinais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Deleção de Genes , Humanos , Células MCF-7 , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo , Solubilidade
11.
BMC Pulm Med ; 14: 196, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25488319

RESUMO

BACKGROUND: Surfactant proteins SP-A and SP-D are useful biomarkers in diagnosis, monitoring, and prognosis of idiopathic pulmonary fibrosis (IPF). Despite their high structural homology, their serum concentrations often vary in IPF patients. This retrospective study aimed to investigate distinct compartmentalization of SP-A and SP-D in the vasculature and lungs by bronchoalveolar lavage fluid (BALF)/serum analysis, hydrophilicity and immunohistochemistry. METHODS: We included 36 IPF patients, 18 sarcoidosis (SAR) patients and 20 healthy subjects. Low-speed centrifugal supernatants of BALF (Sup-1) were obtained from each subject. Sera were also collected from each patient. Furthermore, we separated Sup-1 of IPF patients into hydrophilic supernatant (Sup-2) and hydrophobic precipitate (Ppt) by high-speed centrifugation. We measured SP-A and SP-D levels of each sample with the sandwich ELISA technique. We analyzed the change of the BALF/serum level ratios of the two proteins in IPF patients and their hydrophilicity in BALF. The distribution in the IPF lungs was also examined by immunohistochemical staining. RESULTS: In BALF, SP-A levels were comparable between the groups; however, SP-D levels were significantly lower in IPF patients than in others. Although IPF reduced the BALF/serum level ratios of the two proteins, the change in concentration of SP-D was more evident than SP-A. This suggests a higher disease impact for SP-D. Regarding hydrophilicity, although more than half of the SP-D remained in hydrophilic fractions (Sup-2), almost all of the SP-A sedimented in the Ppt with phospholipids. Hydrophilicity suggests that SP-D migrates into the blood more easily than SP-A in IPF lungs. Immunohistochemistry revealed that SP-A was confined to thick mucus-filling alveolar space, whereas SP-D was often intravascular. This data also suggests that SP-D easily leaks into the bloodstream, whereas SP-A remains bound to surfactant lipids in the alveolar space. CONCLUSIONS: The current study investigated distinct compartmentalization of SP-A and SP-D in the vasculature and lungs. Our results suggest that serum levels of SP-D could reflect pathological changes of the IPF lungs more incisively than those of SP-A.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Endotélio Vascular/química , Interações Hidrofóbicas e Hidrofílicas , Fibrose Pulmonar Idiopática/metabolismo , Alvéolos Pulmonares/química , Proteína A Associada a Surfactante Pulmonar/análise , Proteína D Associada a Surfactante Pulmonar/análise , Idoso , Biomarcadores/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína A Associada a Surfactante Pulmonar/sangue , Proteína D Associada a Surfactante Pulmonar/sangue , Estudos Retrospectivos , Sarcoidose/metabolismo
12.
Biochim Biophys Acta Gen Subj ; 1868(4): 130565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244702

RESUMO

N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.


Assuntos
Fenômenos Biológicos , Polissacarídeos , Cricetinae , Animais , Humanos , Fosforilação , Glicosilação , Células CHO , Cricetulus , Polissacarídeos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
13.
J Biol Chem ; 287(18): 15034-43, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418431

RESUMO

Defensins are important molecules in the innate immune system that eliminate infectious microbes. They also exhibit cytotoxicity against host cells in higher concentrations. The mechanisms by which hosts protect their own cells from cytotoxicity of defensins have been poorly understood. We found that the cytotoxicity of human ß-defensin 3 (hBD3) against lung epithelial cells was dose-dependently attenuated by pulmonary surfactant protein A (SP-A), a collectin implicated in host defense and regulation of inflammatory responses in the lung. The direct interaction between SP-A and hBD3 may be an important factor in decreasing this cytotoxicity because preincubation of epithelial cells with SP-A did not affect the cytotoxicity. Consistent with in vitro analysis, intratracheal administration of hBD3 to SP-A(-/-) mice resulted in more severe tissue damage compared with that in WT mice. These data indicate that SP-A protects lung epithelium from tissue injury caused by hBD3. Furthermore, we found that the functional region of SP-A lies within Tyr(161)-Lys(201). Synthetic peptide corresponding to this region, tentatively called SP-A Y161-G200, also inhibited cytotoxicity of hBD3 in a dose-dependent manner. The SP-A Y161-G200 is a candidate as a therapeutic reagent that prevents tissue injury during inflammation.


Assuntos
Citotoxinas/farmacologia , Pulmão/metabolismo , Peptídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Mucosa Respiratória/metabolismo , beta-Defensinas/farmacologia , Animais , Linhagem Celular , Citotoxinas/efeitos adversos , Citotoxinas/metabolismo , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Ligação Proteica , Proteína A Associada a Surfactante Pulmonar/genética , Mucosa Respiratória/patologia , beta-Defensinas/efeitos adversos , beta-Defensinas/metabolismo
14.
J Biol Chem ; 287(47): 39578-88, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23012359

RESUMO

The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca(2+)-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Bexiga Urinária/metabolismo , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica/metabolismo , Urotélio/metabolismo , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Animais , Infecções por Escherichia coli/patologia , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Humanos , Masculino , Camundongos , Proteína D Associada a Surfactante Pulmonar/genética , Coelhos , Tetraspaninas/biossíntese , Tetraspaninas/genética , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/patologia , Uroplaquina Ia/biossíntese , Uroplaquina Ia/genética , Urotélio/microbiologia , Urotélio/patologia
15.
Biochim Biophys Acta ; 1820(11): 1787-96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22820017

RESUMO

BACKGROUND: Aldehyde reductase (AKR1A; EC 1.1.1.2) catalyzes the reduction of various types of aldehydes. To ascertain the physiological role of AKR1A, we examined AKR1A knockout mice. METHODS: Ascorbic acid concentrations in AKR1A knockout mice tissues were examined, and the effects of human AKR1A transgene were analyzed. We purified AKR1A and studied the activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis. Metabolomic analysis and DNA microarray analysis were performed for a comprehensive study of AKR1A knockout mice. RESULTS: The levels of ascorbic acid in tissues of AKR1A knockout mice were significantly decreased which were completely restored by human AKR1A transgene. The activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis, were suppressed in AKR1A knockout mice. The accumulation of d-glucuronic acid and saccharate in knockout mice tissue and the expression of acute-phase proteins such as serum amyloid A2 are significantly increased in knockout mice liver. CONCLUSIONS: AKR1A plays a predominant role in the reduction of both d-glucuronic acid and d-glucurono-γ-lactone in vivo. The knockout of AKR1A in mice results in accumulation of d-glucuronic acid and saccharate as well as a deficiency of ascorbic acid, and also leads to upregulation of acute phase proteins. GENERAL SIGNIFICANCE: AKR1A is a major enzyme that catalyzes the reduction of d-glucuronic acid and d-glucurono-γ-lactone in vivo, besides acting as an aldehyde-detoxification enzyme. Suppression of AKR1A by inhibitors, which are used to prevent diabetic complications, may lead to the accumulation of d-glucuronic acid and saccharate.


Assuntos
Aldeído Redutase/fisiologia , Aldeído Redutase/genética , Animais , Ácido Ascórbico/análise , Proteínas de Ligação ao Cálcio/análise , Feminino , Glucuronatos/metabolismo , Ácido Glucurônico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Fígado/química , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos
16.
J Immunol ; 187(5): 2586-94, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21821801

RESUMO

Pulmonary collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), play important roles in the innate immunity of the lung. Mycobacterium avium is one of the well-known opportunistic pathogens that can replicate within macrophages. We examined the effects of pulmonary collectins in host defense against M. avium infection achieved via direct interaction between bacteria and collectins. Although both pulmonary collectins bound to M. avium in a Ca(2+)-dependent manner, these collectins revealed distinct ligand-binding specificity and biological activities. SP-A and SP-D bound to a methoxy group containing lipid and lipoarabinomannan, respectively. Binding of SP-D but not SP-A resulted in agglutination of M. avium. A chimeric protein with the carbohydrate recognition domain of SP-D, which chimera revealed a bouquet-like arrangement similar to SP-A, also agglutinated M. avium. The ligand specificity of the carbohydrate recognition domain of SP-D seems to be necessary for agglutination activity. The binding of SP-A strongly inhibited the growth of M. avium in culture media. Although pulmonary collectins did not increase membrane permeability of M. avium, they attenuated the metabolic rate of the bacteria. Observations under a scanning electron microscope revealed that SP-A almost completely covers bacterial surfaces, whereas SP-D binds to certain areas like scattered dots. These observations suggest that a distinct binding pattern of collectins correlates with the difference of their biological activities. Furthermore, the number of bacteria phagocytosed by macrophages was significantly increased in the presence of SP-D. These data indicate that pulmonary collectins play critical roles in host defense against M. avium.


Assuntos
Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Mucosa Respiratória/imunologia , Tuberculose/imunologia , Humanos , Immunoblotting , Macrófagos/imunologia , Macrófagos/microbiologia , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Mycobacterium avium/imunologia , Fagocitose/imunologia , Ligação Proteica , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Ressonância de Plasmônio de Superfície , Tuberculose/metabolismo
17.
Infect Immun ; 80(8): 2956-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615243

RESUMO

We propose two antigenic types of Helicobacter pylori lipopolysaccharides (LPS): highly antigenic epitope-carrying LPS (HA-LPS) and weakly antigenic epitope-carrying LPS (WA-LPS) based on human serum reactivity. Strains carrying WA-LPS are highly prevalent in isolates from gastric cancer patients. WA-LPS exhibits more potent biological activities compared to HA-LPS, namely, upregulation of Toll-like receptor 4 (TLR4) expression and induction of enhanced epithelial cell proliferation. The results of competitive binding assays using monosaccharides and methylglycosides, as well as binding assays using glycosidase-treated LPS, suggested that ß-linked N-acetyl-D-glucosamine and ß-linked D-galactose residues largely contributed to the highly antigenic epitope and the weakly antigenic epitope, respectively. WA-LPS exhibited greater binding activity to surfactant protein D (SP-D) in a Ca(2+)-dependent manner, and this interaction was inhibited by methyl-ß-D-galactoside. The biological activities of WA-LPS were markedly enhanced by the addition of SP-D. Lines of evidence suggested that removal of ß-N-acetyl-D-glucosamine residue, which comprises the highly antigenic epitope, results in exposure of the weakly antigenic epitope. The weakly antigenic epitope interacted preferentially with SP-D, and SP-D enhanced the biological activity of WA-LPS.


Assuntos
Helicobacter pylori/metabolismo , Lipopolissacarídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Antígenos de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicosídeo Hidrolases/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/genética , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Lipopolissacarídeos/imunologia , Ligação Proteica , Proteína D Associada a Surfactante Pulmonar/genética , Estômago/citologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
J Biomed Biotechnol ; 2012: 532071, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675254

RESUMO

Pulmonary surfactant is a mixture of lipids and proteins that covers alveolar surfaces and keeps alveoli from collapsing. Four specific proteins have been identified in surfactant. Among them, two C-type lectins, surfactant proteins A and D (SP-A and SP-D), are known to be implicated in host defense and regulation of inflammatory responses of the lung. These host defense lectins are structurally characterized by N-terminal collagen-like domains and lectin domains and are called pulmonary collectins. They prevent dissemination of infectious microbes by their biological activities including agglutination and growth inhibition. They also promote clearance of microbes by enhancing phagocytosis in macrophages. In addition, they interact with the other pattern-recognition molecules, including Toll-like receptors (TLRs) and TLR-associated molecules, CD14 and MD-2, and regulate inflammatory responses. Furthermore, recent studies have demonstrated that these collectins modulate functions of neutrophil-derived innate immune molecules by interacting with them. These findings indicate that pulmonary collectins play critical roles in host defense of the lung.


Assuntos
Colectinas/imunologia , Pneumonia/imunologia , Surfactantes Pulmonares/imunologia , Animais , Humanos
19.
J Biol Chem ; 285(11): 8434-43, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20056602

RESUMO

Pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), play important roles in innate immunity of the lung. Legionella pneumophila is a bacterial respiratory pathogen that can replicate within macrophages and causes opportunistic infections. L. pneumophila possesses cytolytic activity, resulting from insertion of pores in the macrophage membrane upon contact. We examined whether pulmonary collectins play protective roles against L. pneumophila infection. SP-A and SP-D bound to L. pneumophila and its lipopolysaccharide (LPS) and inhibited the bacterial growth in a Ca(2+)-dependent manner. The addition of LPS in the culture blocked the inhibitory effects on L. pneumophila growth by the collectins, indicating the importance of LPS-collectin interaction. When differentiated THP-1 cells were infected with L. pneumophila in the presence of SP-A and SP-D, the number of permeable cells was significantly decreased, indicating that pulmonary collectins inhibit pore-forming activity of L. pneumophila. The number of live bacteria within the macrophages on days 1-4 after infection was significantly decreased when infection was performed in the presence of pulmonary collectins. The phagocytosis experiments with the pH-sensitive dye-labeled bacteria revealed that pulmonary collectins promoted bacterial localization to an acidic compartment. In addition, SP-A and SP-D significantly increased the number of L. pneumophila co-localized with LAMP-1. These results indicate that pulmonary collectins protect macrophages against contact-dependent cytolytic activity of L. pneumophila and suppress intracellular growth of the phagocytosed bacteria. The promotion of lysosomal fusion with Legionella-containing phagosomes constitutes a likely mechanism of L. pneumophila growth suppression by the collectins.


Assuntos
Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Macrófagos Alveolares/microbiologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Cálcio/metabolismo , Carboidratos/imunologia , Linhagem Celular , Membrana Celular/imunologia , Humanos , Legionella pneumophila/crescimento & desenvolvimento , Lipopolissacarídeos/farmacologia , Lisossomos/imunologia , Monócitos/citologia , Fagocitose/imunologia
20.
Biochim Biophys Acta ; 1790(12): 1705-10, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19840833

RESUMO

BACKGROUND: We have previously shown that lung collectins, surfactant protein A (SP-A) and surfactant protein D, interact with Toll-like receptor (TLR) 2, TLR4, or MD-2. Bindings of lung collectins to TLR2 and TLR4/MD-2 result in the alterations of signaling through these receptors, suggesting the immunomodulatory functions of lung collectins. Mannose binding lectin (MBL) is another collectin molecule which has structural homology to SP-A. The interaction between MBL and TLRs has not yet been determined. METHODS: We prepared recombinant MBL, and analyzed its bindings to recombinant soluble forms of TLR4 (sTLR4) and MD-2. RESULTS: MBL bound to sTLR4 and MD-2. The interactions were Ca2+-dependent and inhibited by mannose or monoclonal antibody against the carbohydrate-recognition domain of MBL. Treatment of sTLR4 or MD-2 by peptide N-glycosidase F significantly decreased the binding of MBL. SP-A bound to deglycosylated sTLR4, and this property did not change in chimeric molecules of SP-A/MBL in which Glu195-Phe228 or Thr174-Gly194 of SP-A were replaced with the corresponding MBL sequences. GENERAL SIGNIFICANCE: These results suggested that MBL binds to TLR4 and MD-2 through the carbohydrate-recognition domain, and that oligosaccharide moieties of TLR4 and MD-2 are important for recognition by MBL. Since our previous studies indicated that lung collectins bind to the peptide portions of TLRs, MBL and lung collectins interact with TLRs by different mechanisms. These direct interactions between MBL and TLR4 or MD-2 suggest that MBL may modulate cellular responses by altering signals through TLRs.


Assuntos
Colectinas/metabolismo , Antígeno 96 de Linfócito/metabolismo , Lectina de Ligação a Manose/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Humanos , Pulmão/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA