Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Genet ; 96(1): 3-16, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30820928

RESUMO

Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.


Assuntos
Dano ao DNA , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/terapia , Telomerase/genética , Homeostase do Telômero , Antecipação Genética , Ética Médica , Estudos de Associação Genética , Marcadores Genéticos , Testes Genéticos , Variação Genética , Humanos , Mutação , Fenótipo , Doenças Raras , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética
2.
Medicina (B Aires) ; 74(1): 69-76, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-24561847

RESUMO

Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.


Assuntos
Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Animais , Divisão Celular/fisiologia , Senescência Celular/genética , Humanos , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
3.
Oncol Rep ; 49(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960859

RESUMO

PIN1 is the only known enzyme capable of recognizing and isomerizing the phosphorylated Serine/Threonine­Proline motif. Through this mechanism, PIN1 controls diverse cellular functions, including telomere maintenance. Both PIN1 overexpression and its involvement in oncogenic pathways are involved in several cancer types, including glioblastoma (GBM), a lethal disease with poor therapeutic resources. However, knowledge of the role of PIN1 in GBM is limited. Thus, the present work aimed to study the role of PIN1 as a telomere/telomerase regulator and its contribution to tumor biology. PIN1 knockout (KO) LN­229 cell variant using CRISPR/Cas9 was developed and compared with PIN1 LN­229 expressing cells. To study the effect of PIN1 absence, status of NF­κB pathway was evaluated by luciferase reporter gene assay and quantitative PCR. Results revealed that PIN1 deletion in GBM cells diminished the active levels of NF­κB and decrease the transcription of il­8 and htert genes. Then, telomere/telomerase related processes were studied by RQ­TRAP assay and telomere length determination by qPCR, obtaining a reduction both in telomerase activity as in telomere length in PIN1 KO cells. In addition, measurement of SA ß­galactosidase and caspase­3 activities revealed that loss of PIN1 triggers senescence and apoptosis. Finally, migration, cell cycle progression and tumorigenicity were studied by flow cytometry/western blot, Transwell assay and in vivo experiments, respectively. PIN1 deletion decreased migration as well as cell cycle progression by increasing doubling time and also resulted in the loss of LN­229 cell ability to form tumors in mice. These results highlight the role of PIN1 in telomere homeostasis and GBM progression, which supports PIN1 as a potential molecular target for the development of novel therapeutic agents for GBM treatment.


Assuntos
Glioblastoma , Telomerase , Humanos , Animais , Camundongos , Glioblastoma/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Telomerase/metabolismo , Reação em Cadeia da Polimerase , Telômero/genética , Telômero/metabolismo , Linhagem Celular Tumoral , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
4.
Oncol Rep ; 36(5): 2731-2736, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27633795

RESUMO

Limitless replicative potential is one of the hallmarks of cancer that is mainly due to the activity of telomerase. This holoenzyme maintains telomere length, adding TTAGGG repetitions at the end of chromosomes in each cell division. In addition to this function, there are extratelomeric roles of telomerase that are involved in cancer promoting events. It has been demonstrated that TERT, the catalytic component of telomerase, acts as a transcriptional modulator in many signaling pathways. Taking into account this evidence and our experience on the study of azidothymidine (AZT) as an inhibitor of telomerase activity, the present study analyzes the effect of AZT on some telomeric and extratelomeric activities. To carry out the present study, we evaluated the transcription of genes that are modulated by the Wnt/ß-catenin pathway, such as c-Myc and cyclin-D1 (Cyc-D1) and cell processes related with their expression, such as, proliferation, modifications of the actin cytoskeleton, cell migration and cell cycle in a mammary carcinoma cell line (F3II). Results obtained after treatment with AZT (600 µM) for 15 passages confirmed the inhibitory effect on telomerase. Regarding extratelomeric activities, our results showed a decrease of 64, 38 and 25% in the transcription of c-Myc, Cyc-D1 and TERT, respectively (p<0.05) after AZT treatment. Furthermore, we found an effect on cell migration, reaching an inhibition of 48% (p<0.05) and a significant passage-dependent increase on cell doubling time during treatment. Finally, we evaluated the effect on cell cycle, obtaining a decline in G0/G1 in AZT-treated cells. These results allow us to postulate that AZT is not only an inhibitor of telomerase activity, but also a potential modulator of extratelomeric processes involved in cancer promotion.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Ciclina D1/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Telomerase/genética , Zidovudina/administração & dosagem , Citoesqueleto de Actina/efeitos dos fármacos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Divisão Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Modelos Animais de Doenças , Feminino , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Telomerase/antagonistas & inibidores , Telomerase/biossíntese , Homeostase do Telômero/genética , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética
5.
Front Oncol ; 2: 113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973556

RESUMO

Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.

6.
Int J Oncol ; 41(5): 1561-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941386

RESUMO

Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells, proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. Undoubtedly, DNA polymerase is not capable of completely copying DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis and cell death. However, in tumor cells the system of telomere length maintenance is activated. Much work has been done regarding the complex telomere/telomerase as a unique target, highly specific in cancer cells. Telomeres have additional proteins that regulate the binding of telomerase. Telomerase, also associates with a number of proteins forming the sheltering complex having a central role in telomerase activity. This review focuses on the structure and function of the telomere/telomerase complex and its altered behavior leading to disease, mainly cancer. Although telomerase therapeutics are not approved yet for clinical use, we can assume that based on the promising in vitro and in vivo results and successful clinical trials, it can be predicted that telomerase therapeutics will be utilized soon in the combat against malignancies and degenerative diseases. The active search for modulators is justified, because the telomere/telomerase system is an extremely promising target offering possibilities to decrease or increase the viability of the cell for therapeutic purposes.


Assuntos
Telomerase/metabolismo , Homeostase do Telômero/fisiologia , Telômero/química , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Mamíferos , Neoplasias/genética , Neoplasias/metabolismo
7.
Medicina (B.Aires) ; Medicina (B.Aires);74(1): 69-76, ene.-feb. 2014. ilus
Artigo em Espanhol | LILACS | ID: lil-708560

RESUMO

La telomerasa es la enzima responsable del mantenimiento de la longitud de los telómeros mediante la adición de secuencias repetitivas ricas en guanina, y su actividad se observa principalmente en gametos, células madre y células tumorales. En las células somáticas humanas el potencial de proliferación es limitado, alcanzando la senescencia luego de 50-70 divisiones celulares, debido a que la ADN polimerasa no es capaz de copiar el ADN en los extremos de los cromosomas. Por el contrario, en la mayoría de las células tumorales el potencial de replicación es ilimitado debido al mantenimiento de la longitud telomérica dado por la telomerasa. Los telómeros tienen proteínas adicionales que regulan la unión de la telomerasa. De la misma manera la telomerasa también se asocia con un complejo de proteínas que regulan su actividad. Este trabajo se centra en la estructura y función del complejo telómero/telomerasa y a cómo las alteraciones en su comportamiento conducen al desarrollo de diversas enfermedades, principalmente cáncer. El desarrollo de inhibidores del sistema telómero / telomerasa podría ser un blanco con posibilidades prometedoras.


Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.


Assuntos
Animais , Humanos , Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Senescência Celular/genética , Divisão Celular/fisiologia , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , /fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA