Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 90(6): 122, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24790160

RESUMO

Reproductive development of anthozoans reveals wide range of breeding strategies. Here, we report the occurrence of trioecy in the sea anemone Aiptasia diaphana (co-occurrence of males, females, and hermaphrodites), which so far was well documented only in plants. Age-homogeneous populations were obtained from pedal lacerates (asexual propagules) and cultured under control conditions. Careful documentation of growth, gamete morphology, and vertebrate-like steroid (i.e., progesterone, testosterone, and estradiol) levels were carried out over a 9-wk period between 4 and 12 wk postlaceration (wpl). First phenotypic signs of gametes development were observed in 6-wk-old anemones, pointing to the differentiation of males and hermaphrodites. While the males exhibited cellular progression of spermatogenesis, the hermaphrodites underwent a process of sex allocation, giving rise to male, female, and hermaphrodite phenotypes. Testosterone levels were relatively high prior to gamete appearance (4 wpl) and later on during gamete maturation (10 wpl). Conversely, estradiol levels steadily increased from 6 to 10 wpl, reaching their peak concomitant with oocyte maturation. Interestingly, increased oocyte atresia incidences were recorded during 9-12 wpl, coinciding with declining levels of steroid hormones. These results point to a strong similarity between the activity of sex steroids in vertebrates and that of vertebrate-like sex steroids on critical stages of A. diaphana's sexual differentiation and gametogenic cycle. The reproductive characteristics of A. diaphana make this anthozoan an important model species for the study of evolutionary drivers and processes underlying sexual development.


Assuntos
Células Germinativas/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Organismos Hermafroditas/fisiologia , Reprodução/fisiologia , Anêmonas-do-Mar/fisiologia , Diferenciação Sexual/fisiologia , Animais , Estradiol/metabolismo , Feminino , Masculino , Modelos Biológicos , Caracteres Sexuais , Especificidade da Espécie , Estatísticas não Paramétricas , Testosterona/metabolismo
2.
ISME J ; 14(1): 91-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31551530

RESUMO

Dust is an important iron (Fe) source to the ocean, but its utilization by phytoplankton is constrained by rapid sinking and slow dissolution dust-bound iron (dust-Fe). Colonies of the globally important cyanobacterium, Trichodesmium, overcome these constraints by efficient dust capturing and active dust-Fe dissolution. In this study we examined the ability of Trichodesmium colonies to maximize their Fe supply from dust by selectively collecting Fe-rich particles. Testing for selectivity in particle collection, we supplied ~600 individual colonies, collected on multiple days from the Gulf of Aqaba, with natural dust and silica minerals that were either cleaned of or coated with Fe. Using a stereoscope, we counted the number of particles retained by each colony shortly after addition and following 24 h incubation with particles, and documented translocation of particles to the colony core. We observed a strong preference for Fe-rich particles over Fe-free particles in all tested parameters. Moreover, some colonies discarded the Fe-free particles they initially collected. The preferred collection of Fe-rich particles and disposal of Fe-free particles suggest that Trichodesmium can sense Fe and selectively choose Fe-rich dust particles. This ability assists Trichodesmium obtain Fe from dust and facilitate its growth and subsequent contribution to nutrient cycling and productivity in the ocean.


Assuntos
Ferro/análise , Trichodesmium/química , Poeira/análise , Minerais
3.
Nat Ecol Evol ; 2(2): 306-316, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255297

RESUMO

The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.


Assuntos
Distribuição Animal , Peixes/fisiologia , Metagenoma , Animais , Recifes de Corais , Complexo IV da Cadeia de Transporte de Elétrons/análise , Proteínas de Peixes/análise , Peixes/crescimento & desenvolvimento , Israel , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas Mitocondriais/análise , Oceanos e Mares , Densidade Demográfica , Análise Espaço-Temporal
4.
Sci Rep ; 6: 21000, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875833

RESUMO

Corals make use of different chemical compounds during interactions with prey, predators and aggressors. Hydrogen Peroxide (H2O2) is produced and released by a wide range of organisms as part of their defense against grazers or pathogens. In coral reefs, the large fluxes and relatively long half-life of H2O2, make it a potentially important info-chemical or defense molecule. Here we describe a previously unstudied phenomenon of rapid H2O2 release from the reef-building coral Stylophora pistillata during feeding on zooplankton and in response to chemical and physical stimuli. Following stimuli, both symbiotic and bleached corals were found to rapidly release H2O2 to the surrounding water for a short period of time (few minutes). The H2O2 release was restricted to the site of stimulus, and an increase in physical stress and chemical stimuli concentration resulted in elevated H2O2 release. Omission of calcium (a key regulator of exocytotic processes) from the experimental medium inhibited H2O2 release. Hence we suggest that H2O2 is actively released in response to stimuli, rather than leaking passively from the coral tissue. We estimate that at the site of stimulus H2O2 can reach concentrations potentially high enough to deter predators or motile, potentially pathogenic, bacteria.


Assuntos
Antozoários/metabolismo , Reação de Fuga/fisiologia , Peróxido de Hidrogênio/metabolismo , Animais , Antozoários/fisiologia , Cálcio/metabolismo , Recifes de Corais , Zooplâncton/metabolismo
5.
Mar Pollut Bull ; 64(8): 1556-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22743234

RESUMO

In this study we compared reproductive characteristics and steroid hormone levels in the non-indigenous scleractinian coral, Oculina patagonica, inhabiting contaminated vs. uncontaminated reference sites along the Israeli Mediterranean coast. Our results indicate significantly higher steroid levels in both seawater and coral tissue samples from contaminated sites as compared to reference sites, suggesting that corals tend to accumulate steroids from the surrounding waters. Despite their higher steroid levels, corals from the contaminated sites showed reproductive potential comparable to those of the reference sites. Interestingly, a clear distinction could be seen between corals exposed to pollution for long vs. short durations, with the latter showing a failure to complete gametogenesis. This suggests that reproduction in O. patagonica is susceptible to acute rather than chronic stress. The involvement of adjustment/adaptation processes may explain this species tolerance, and may reflect the ability of O. patagonica to successfully invade new areas in the Mediterranean Sea.


Assuntos
Antozoários/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Adaptação Fisiológica , Animais , Antozoários/metabolismo , Monitoramento Ambiental , Gametogênese/efeitos dos fármacos , Israel , Mar Mediterrâneo , Reprodução , Água do Mar/química , Estresse Fisiológico , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA