Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Plant Cell Environ ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965812

RESUMO

This study aims to elucidate if the regulation of plant aquaporins by the arbuscular mycorrhizal (AM) symbiosis occurs only in roots or cells colonized by the fungus or at whole root system. Maize plants were cultivated in a split-root system, with half of the root system inoculated with the AM fungus and the other half uninoculated. Plant growth and hydraulic parameters were measured and aquaporin gene expression was determined in each root fraction and in microdissected cells. Under well-watered conditions, the non-colonized root fractions of AM plants grew more than the colonized root fraction. Total osmotic and hydrostatic root hydraulic conductivities (Lo and Lpr) were higher in AM plants than in non-mycorrhizal plants. The expression of most maize aquaporin genes analysed was different in the mycorrhizal root fraction than in the non-mycorrhizal root fraction of AM plants. At the cellular level, differential aquaporin expression in AM-colonized cells and in uncolonized cells was also observed. Results indicate the existence of both, local and systemic regulation of plant aquaporins by the AM symbiosis and suggest that such regulation is related to the availability of water taken up by fungal hyphae in each root fraction and to the plant need of water mobilization.

2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068878

RESUMO

Molecular plant biology is the study of the molecular basis of plant life [...].


Assuntos
Biologia Molecular , Plantas , Espanha , Plantas/genética , Biologia
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982272

RESUMO

Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.


Assuntos
Bacillus megaterium , Micorrizas , Simbiose/fisiologia , Zea mays/metabolismo , Secas , Temperatura , Micorrizas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fotossíntese , Raízes de Plantas/metabolismo
4.
J Exp Bot ; 73(15): 5279-5293, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35429274

RESUMO

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


Assuntos
Oryza , Estudo de Associação Genômica Ampla , Oryza/genética , Melhoramento Vegetal , Transpiração Vegetal/fisiologia , Água
5.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077217

RESUMO

In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested in a second experiment for their responses to drought in combination with an arbuscular mycorrhizal (AM) fungus. Emphasis was placed on determining the role of plant aquaporins and phytohormones in the responses of these contrasting maize lines to cope with drought stress. Results showed that both plant aquaporins and hormones are altered by the AM symbiosis and are highly involved in the physiological responses of maize plants to drought stress. The regulation by the AM symbiosis of aquaporins involved in water transport across cell membranes alters radial water transport in host plants. Hormones such as IAA, SA, ABA and jasmonates must be involved in this process either by regulating the own plant-AM fungus interaction and the activity of aquaporins, or by inducing posttranscriptional changes in these aquaporins, which in turns alter their water transport capacity. An intricate relationship between root hydraulic conductivity, aquaporins and phytohormones has been observed, revealing a complex network controlling water transport in maize roots.


Assuntos
Aquaporinas , Micorrizas , Aquaporinas/metabolismo , Secas , Hormônios/metabolismo , Micorrizas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose/fisiologia , Água/metabolismo , Zea mays/metabolismo
6.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066387

RESUMO

Salinity is one of the major abiotic stresses that inhibit the growth, development, and productivity of crops, particularly in hot and dry areas of the world [...].


Assuntos
Adaptação Fisiológica/genética , Plantas/genética , Estresse Salino/genética , Agricultura , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Melhoramento Vegetal
7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143345

RESUMO

Boron (B) is an essential micronutrient for higher plants, having structural roles in primary cell walls, but also other functions in cell division, membrane integrity, pollen germination or metabolism. Both high and low B levels negatively impact crop performance. Thus, plants need to maintain B concentration in their tissues within a narrow range by regulating transport processes. Both active transport and protein-facilitated diffusion through aquaporins have been demonstrated. This study aimed at elucidating the possible involvement of some plant aquaporins, which can potentially transport B and are regulated by the arbuscular mycorrhizal (AM) symbiosis in the plant B homeostasis. Thus, AM and non-AM plants were cultivated under 0, 25 or 100 µM B in the growing medium and subjected or not subjected to drought stress. The accumulation of B in plant tissues and the regulation of plant aquaporins and other B transporters were analyzed. The benefits of AM inoculation on plant growth (especially under drought stress) were similar under the three B concentrations assayed. The tissue B accumulation increased with B availability in the growing medium, especially under drought stress conditions. Several maize aquaporins were regulated under low or high B concentrations, mainly in non-AM plants. However, the general down-regulation of aquaporins and B transporters in AM plants suggests that, when the mycorrhizal fungus is present, other mechanisms contribute to B homeostasis, probably related to the enhancement of water transport, which would concomitantly increase the passive transport of this micronutrient.


Assuntos
Aquaporinas/metabolismo , Boro/metabolismo , Secas , Fungos/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Biomassa , Clorofila/química , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Homeostase , Fosforilação , Complexo de Proteína do Fotossistema II/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Estômatos de Plantas , Pólen , Solo , Simbiose , Água/química
8.
J Sci Food Agric ; 100(4): 1577-1587, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31769028

RESUMO

BACKGROUND: Arbuscular mycorrhizal (AM) fungi establish symbioses with most agricultural plants and improves growth under soil stress conditions. The present study aimed to evaluate the functional contribution of 2 AM fungal inocula (a native consortium isolated from saline soils of the Atacama Desert, 'HMC', and a reference inoculum Claroideoglomus claroideum, 'Cc') on the growth and antioxidant compounds of two cultivars of lettuce (Lactuca sativa cvs. 'Grand Rapids' and 'Lollo Bionda') at increasing salt stress conditions (0, 40, and 80 mmol L-1 NaCl). At 60 days of plant growth, the symbiotic development, biomass production, lipid peroxidation, proline content, antioxidant enzymes, phenolic compound profiles and antioxidant activity were evaluated. RESULTS: The 2 AM inocula differentially colonized the roots of Grand Rapids and Lollo Bionda lettuce plants. The AM symbioses increased proline synthesis and superoxide dismutase, catalase and ascorbate peroxidase activities and diminished phenolic compound synthesis and oxidative damage in lettuce, which was related positively to a higher growth of inoculated plants under salt exposure. The higher concentration of phenolic compounds induced by salinity in non-inoculated plants was associated with high oxidative stress and low fresh biomass production. CONCLUSION: Modulation of salinity stress in lettuce by AM root colonization is a result of changes of antioxidant enzymatic systems that reduce oxidative damage and sustain growth. The application of AM fungi to improve crop production by means of directed inoculation with efficient AM fungal strains may enhance lettuce production on soils plagued with salinity worldwide. © 2019 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/fisiologia , Antioxidantes/metabolismo , Glomeromycota/fisiologia , Lactuca/microbiologia , Lactuca/fisiologia , Micorrizas/fisiologia , Catalase/genética , Catalase/metabolismo , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Cloreto de Sódio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
9.
Planta ; 249(4): 1207-1215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603790

RESUMO

MAIN CONCLUSION: Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N2-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.


Assuntos
Phaseolus/metabolismo , Raízes de Plantas/metabolismo , Rhizobium leguminosarum/metabolismo , Simbiose , Desidratação , Nitrogênio/metabolismo , Phaseolus/microbiologia , Phaseolus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/metabolismo , Água/metabolismo
10.
Plant Cell Environ ; 42(7): 2274-2290, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916398

RESUMO

Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf ) and cell hydraulic conductivity (Lpc ) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 µm s-1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.


Assuntos
Aquaporinas/metabolismo , Raízes de Plantas/metabolismo , Simbiose , Água/metabolismo , Zea mays/metabolismo , Aquaporinas/genética , Transporte Biológico , Biomassa , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Permeabilidade , Fosforilação , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta , Estômatos de Plantas/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
11.
J Exp Bot ; 70(21): 6437-6446, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504720

RESUMO

The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa × deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants.


Assuntos
Ácido Abscísico/metabolismo , Aquaporinas/metabolismo , Citocininas/metabolismo , Secas , Laccaria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Populus/fisiologia , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas , Laccaria/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/microbiologia , Plântula/crescimento & desenvolvimento , Solo , Estresse Fisiológico
12.
Mol Plant Microbe Interact ; 31(6): 633-650, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384430

RESUMO

Management of plant growth-promoting bacteria (PGPB) can be implemented to deal with sustainable intensification of agriculture. Ethylene is an essential component for plant growth and development and in response to drought. However, little is known about the effects of bacterial inoculation on ethylene transduction pathway. Thus, the present study sought to establish whether ethylene perception is critical for growth induction by two different PGPB strains under drought conditions and the analysis of bacterial effects on ethylene production and gene expression in tomatoes (Solanum lycopersicum). The ethylene-insensitive never ripe (nr) and its isogenic wild-type (wt) cv. Pearson line were inoculated with either Bacillus megaterium or Enterobacter sp. strain C7 and grown until the attainment of maturity under both well-watered and drought conditions. Ethylene perception is crucial for B. megaterium. However, it is not of prime importance for Enterobacter sp. strain C7 PGPB activity under drought conditions. Both PGPB decreased the expression of ethylene-related genes in wt plants, resulting in stress alleviation, while only B. megaterium induced their expression in nr plants. Furthermore, PGPB inoculation affected transcriptomic profile dependency on strain, genotype, and drought. Ethylene sensitivity determines plant interaction with PGPB strains. Enterobacter sp. strain C7 could modulate amino-acid metabolism, while nr mutation causes a partially functional interaction with B. megaterium, resulting in higher oxidative stress and loss of PGPB activity.


Assuntos
Bacillus megaterium/fisiologia , Enterobacter/fisiologia , Microbiologia do Solo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Água , Biomassa , Secas , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose
13.
Plant Cell Physiol ; 59(2): 248-261, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165704

RESUMO

Jasmonic acid (JA) and arbuscular mycorrhizal (AM) symbioses are known to protect plants against abiotic and biotic stresses, but are also involved in the regulation of root hydraulic conductance (L). The objective of this experiment was to elucidate the role of JA in the water relations and hormonal regulation of AM plants under drought by using tomato plants defective in the synthesis of JA (def-1). Our results showed that JA is involved in the uptake and transport of water through its effect on both physiological parameters (stomatal conductance and L) and molecular parameters, mainly by controlling the expression and abundance of aquaporins. We observed that def-1 plants increased the expression of seven plant aquaporin genes under well-watered conditions in the absence of AM fungus, which partly explain the increment of L by this mutation under well-watered conditions. In addition, the effects of the AM symbiosis on plants were modified by the def-1 mutation, with the expression of some aquaporins and plant hormone concentration being disturbed. On the other hand, methyl salicylate (MeSA) content was increased in non-mycorrhizal def-1 plants, suggesting that MeSA and JA can act together in the regulation of L. In a complementary experiment, it was found that exogenous MeSA increased L, confirming our hypothesis. Likewise, we confirmed that JA, ABA and SA are hormones involved in plant mechanisms to cope with stressful situations, their concentrations being controlled by the AM symbiosis. In conclusion, under well-watered conditions, the def-1 mutation mimics the effects of AM symbiosis, but under drought conditions the def-1 mutation changed the effects of the AM symbiosis on plants.


Assuntos
Secas , Mutação/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Simbiose , Água , Análise de Variância , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Lineares , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia
14.
Anal Chem ; 90(18): 10837-10842, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30136575

RESUMO

The emerging field of plasmonics has promoted applications of optical technology, especially in plasmon-enhanced spectroscopy (PES). However, in plasmon-enhanced fluorescence (PEF), "metal loss" could significantly quench the fluorescence during the process, which dramatically limits its applications in analysis and high-resolution imaging. In this report, silver core silica shell-isolated nanoparticles (Ag@SiO2 NPs or SHINs) with a tunable thickness of shell are used to investigate the interactions between NPs and emitters by constructing coupling and noncoupling modes. The plasmonic coupling mode between Ag@SiO2 NPs and Ag film reveals an exceeding integrating spectral intensity enhancement of 330 and about 124 times that of the radiative emission rate acceleration for shell-isolated nanoparticle enhanced phosphorescence (SHINEP). The experimental findings are supported by theoretical calculations using the finite-element method (FEM). Hence, the SHINEP may provide a novel approach for understanding the interaction of plasmon and phosphorescence, and it holds great potential in surface detection analysis and singlet-oxygen-based clinical therapy.

15.
New Phytol ; 218(1): 322-334, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281758

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture.


Assuntos
Produtos Agrícolas/microbiologia , Domesticação , Micorrizas/fisiologia , Simbiose , Produtos Agrícolas/efeitos dos fármacos , Análise dos Mínimos Quadrados , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Fósforo/farmacologia , Filogenia , Simbiose/efeitos dos fármacos
16.
Plant Cell Environ ; 41(4): 865-875, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29380389

RESUMO

Plants exhibit respiratory bypasses (e.g., the alternative oxidase [AOX]) and increase the synthesis of carboxylates in their organs (leaves and roots) in response to phosphorus (P) deficiency, which increases P uptake capacity. They also show differential expression of high-affinity inorganic phosphorus (Pi) transporters, thus avoiding P toxicity at a high P availability. The association between AOX and carboxylate synthesis was tested in Solanum lycopersicum plants grown at different soil P availability, by using plants grown under P-sufficient and P-limiting conditions and by applying a short-term (24 hr) P-sufficient pulse to plants grown under P limitation. Tests were also performed with plants colonized with arbuscular mycorrhizal fungi, which increased plant P concentration under reduced P availability. The in vivo activities of AOX and cytochrome oxidase were measured together with the concentration of carboxylates and the P concentration in plant organs. Gene transcription of Pi transporters (LePT1 and LePT2) was also studied. A coordinated response between plant P concentration with these traits was observed, indicating that a sufficient P availability in soil led to a suppression of both AOX activity and synthesis of citrate and a downregulation of the transcription of genes encoding high-affinity Pi transporters, presumably to avoid P toxicity.


Assuntos
Ácido Cítrico/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Rizosfera
17.
Chem Soc Rev ; 46(13): 3962-3979, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28639669

RESUMO

Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.

18.
Planta ; 246(5): 987-997, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28735369

RESUMO

MAIN CONCLUSION: The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lpo) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lpo in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lpo only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lpo is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lpo to environmental changes.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Solanum lycopersicum/fisiologia , Aminoácidos Cíclicos/farmacologia , Ácidos Aminoisobutíricos/farmacologia , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Umidade , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Água/metabolismo
19.
Ann Bot ; 120(1): 101-122, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586422

RESUMO

Background and Aims: Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. Methods: An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Key Results: Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Conclusions: Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of ethylene perception and improved nitrogen assimilation in ethylene-insensitive plants. Thus, ethylene sensitivity is a determinant for B. megaterium , but is not involved in Enterobacter C7 PGPB activity.


Assuntos
Bacillus megaterium/fisiologia , Enterobacter/fisiologia , Etilenos/química , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Raízes de Plantas/química
20.
Mycorrhiza ; 27(7): 639-657, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28647757

RESUMO

At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.


Assuntos
Micorrizas/fisiologia , Pressão Osmótica , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Água/metabolismo , Agricultura , Antioxidantes , Expressão Gênica , Fotossíntese , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA